Research

We're advancing the state-of-the-art in artificial intelligence through fundamental and applied research in open collaboration with the community.

Notable Papers

RESEARCH

ML APPLICATIONS

GrokNet: Unified Computer Vision Model Trunk and Embeddings For Commerce

Sean Bell

Yiqun Liu

Sami Alsheikh

Yina Tang...

KDD

COMPUTER VISION

Live Face De-Identification in Video

Oran Gafni

Lior Wolf

Yaniv Taigman

International Conference on Computer Vision (ICCV)

RESEARCH

Single-Network Whole-Body Pose Estimation

Gines Hidalgo

Yaadhav Raaj

Haroon Idrees

Donglai Xiang...

International Conference on Computer Vision (ICCV)

SPEECH & AUDIO

A Universal Music Translation Network

Noam Mor

Lior Wolf

Adam Polyak

Yaniv Taigman

International Conference on Learning Representations (ICLR)

Latest Publications

January 01, 2021

Asynchronous Gradient-Push | Facebook AI Research

We consider a multi-agent framework for distributed optimization where each agent has access to a local smooth strongly convex function, and the collective goal is to achieve consensus on the parameters that minimize the sum of the agents’…

Mahmoud Assran, Michael Rabbat

January 01, 2021

August 22, 2020

GrokNet: Unified Computer Vision Model Trunk and Embeddings For Commerce

In this paper we propose image classification modeling technique targeted for marketplace. We use public posts from marketplace and search log interactions for training image classifier and achieve significant improvements in e-commerce in comparison to previous version of our image classifier.

Sean Bell, Yiqun Liu, Sami Alsheikh, Yina Tang, Ed Pizzi, M. Henning, Karun Singh, Omkar Parkhi, Fedor Borisyuk

August 22, 2020

August 14, 2020

On the Convergence of Nesterov’s Accelerated Gradient Method in Stochastic Settings | Facebook AI Research

We study Nesterov’s accelerated gradient method with constant step-size and momentum parameters in the stochastic approximation setting (unbiased gradients with bounded…

Mido Assran, Michael Rabbat

August 14, 2020

August 14, 2020

Graph Structure of Neural Networks | Facebook AI Research

Neural networks are often represented as graphs of connections between neurons. However, despite their wide use, there is currently little understanding of the relationship…

Jiaxuan You, Jure Leskovec, Kaiming He, Saining Xie

August 14, 2020

Fundamental & Applied Research

At Facebook AI, we conduct both fundamental and applied research to advance our understanding and impact product experiences. We publish our discoveries in peer reviewed academic journals and conferences, and build AI technologies used by billions of people around the world.

Fundamental Research

FAIR seeks to further our fundamental understanding in both new and existing domains, covering the full spectrum of topics related to AI, with the mission of advancing the state-of-the-art of AI through open research for the benefit of all.

Along with the key principles of Facebook AI - openness, collaboration, excellence, and scale - we believe FAIR researchers also need to have the freedom and autonomy to design and follow their own research agendas so they can take on the most impactful work and develop the most disruptive projects, all while sharing their results with the community.

Applied Research

Facebook AI Applied Research engages in cutting-edge research that can improve and power new product experiences at huge scale for our community. Building on Facebook AI's key principles of openness, collaboration, excellence, and scale, we make big, bold research investments focused on building social value and bringing the world closer together.

Our Values

We align our fundamental and applied research efforts and applications around a few key principles:

Openness

We believe the latest advancements in AI should be published and open-sourced for the community to learn about and build upon.

Collaboration

We collaborate openly with both internal and external partners to share knowledge and cultivate diverse perspectives and needs.

Excellence

There is no shortage of new areas to explore in AI - our researchers focus on the projects that we believe will have the most positive impact on people and society.

Scale

To bring the benefits of AI to more people and improve accessibility, our research must account for both large scale data and computation needs.

Help Us Pioneer the Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.