RESEARCH

COMPUTER VISION

You2Me: Inferring Body Pose in Egocentric Video via First and Second Person Interactions

June 14, 2020

Abstract

The body pose of a person wearing a camera is of great interest for applications in augmented reality, healthcare, and robotics, yet much of the person’s body is out of view for a typical wearable camera. We propose a learning-based approach to estimate the camera wearer’s 3D body pose from egocentric video sequences. Our key insight is to leverage interactions with another person—whose body pose we can directly observe—as a signal inherently linked to the body pose of the first-person subject. We show that since interactions between individuals often induce a well-ordered series of back-and-forth responses, it is possible to learn a temporal model of the interlinked poses even though one party is largely out of view. We demonstrate our idea on a variety of domains with dyadic interaction and show the substantial impact on egocentric body pose estimation, which improves the state of the art.

Download the Paper

AUTHORS

Written by

Evonne Ng

Donglai Xiang

Hanbyul Joo

Kristen Grauman

Publisher

Conference on Computer Vision and Pattern Recognition (CVPR)

Research Topics

Computer Vision

Related Publications

June 15, 2019

COMPUTER VISION

FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search | Facebook AI Research

Designing accurate and efficient ConvNets for mobile devices is challenging because the design space is combinatorially large. Due to this, previous neural architecture search (NAS) methods are computationally expensive. ConvNet architecture…

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing Jia, Kurt Keutzer

June 15, 2019

April 28, 2019

COMPUTER VISION

Inverse Path Tracing for Joint Material and Lighting Estimation | Facebook AI Research

Modern computer vision algorithms have brought significant advancement to 3D geometry reconstruction. However, illumination and material reconstruction remain less studied, with current approaches assuming very simplified models for materials…

Dejan Azinović, Tzu-Mao Li, Anton Kaplanyan, Matthias Nießner

April 28, 2019

June 14, 2019

COMPUTER VISION

Thinking Outside the Pool: Active Training Image Creation for Relative Attributes | Facebook AI Research

Current wisdom suggests more labeled image data is always better, and obtaining labels is the bottleneck. Yet curating a pool of sufficiently diverse and informative images is itself a challenge. In particular, training image curation is…

Aron Yu, Kristen Grauman

June 14, 2019

September 09, 2018

COMPUTER VISION

DDRNet: Depth Map Denoising and Refinement for Consumer Depth Cameras Using Cascaded CNNs | Facebook AI Research

Consumer depth sensors are more and more popular and come to our daily lives marked by its recent integration in the latest iPhone X. However, they still suffer from heavy noises which dramatically limit their applications. Although plenty of…

Shi Yan, Chenglei Wu, Lizhen Wang, Feng Xu, Liang An, Kaiwen Guo, Yebin Liu

September 09, 2018

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.