NLP

Unsupervised Speech Recognition

October 25, 2021

Abstract

Despite rapid progress in the recent past, current speech recognition systems still require labeled training data which limits this technology to a small fraction of the languages spoken around the globe. This paper describes wav2vec-U, short for wav2vec Unsupervised, a method to train speech recognition models without any labeled data. We leverage self-supervised speech representations to segment unlabeled audio and learn a mapping from these representations to phonemes via adversarial training. The right representations are key to the success of our method. Compared to the best previous unsupervised work, wav2vec-U reduces the phone error rate on the TIMIT benchmark from 26.1 to 11.3. On the larger English Librispeech benchmark, wav2vec-U achieves a word error rate of 5.9 on test-other, rivaling some of the best published systems trained on 960 hours of labeled data from only two years ago. We also experiment on nine other languages, including low-resource languages such as Kyrgyz, Swahili and Tatar. The code will be open sourced.

Download the Paper

AUTHORS

Written by

Alexei Baevski

Wei-Ning Hsu

Alexis Conneau

Michael Auli

Publisher

NeurIPS

Related Publications

November 16, 2022

RESEARCH

NLP

Memorization Without Overfitting: Analyzing the Training Dynamics of Large Language Models

Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer

November 16, 2022

October 31, 2022

NLP

ML APPLICATIONS

AD-Drop: Attribution Driven Dropout for Robust Language Model Finetuning

Qifan Wang, Shaoliang Nie, Jinghao Deng, Tao Yang, Xiaojun Quan

October 31, 2022

October 31, 2022

RESEARCH

NLP

Autoregressive Search Engines: Generating Substrings as Document Identifiers

Fabio Petroni, Giuseppe Ottaviano, Michele Bevilacqua, Patrick Lewis, Scott Yih, Sebastian Riedel

October 31, 2022

July 07, 2022

NLP

CCQA: A New Web-Scale Question Answering Dataset for Model Pre-Training

Xilun Chen, Armen Aghajanyan, Barlas Oguz, Scott Yih, Sonal Gupta, Patrick Huber

July 07, 2022

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.