RESEARCH

NLP

Transformer-based Acoustic Modeling for Hybrid Speech Recognition

May 4, 2020

Abstract

We propose and evaluate transformer-based acoustic models (AMs) for hybrid speech recognition. Several modeling choices are discussed in this work, including various positional embedding methods and an iterated loss to enable training deep transformers. We also present a preliminary study of using limited right context in transformer models, which makes it possible for streaming applications. We demonstrate that on the widely used Librispeech benchmark, our transformer-based AM outperforms the best published hybrid result by 19% to 26% relative when the standard n-gram language model (LM) is used. Combined with neural network LM for rescoring, our proposed approach achieves state-of-the-art results on Librispeech. Our findings are also confirmed on a much larger internal dataset.

Download the Paper

AUTHORS

Written by

Yongqiang Wang

Abdelrahman Mohamed

Duc Le

Chunxi Liu

Alex Xiao

Jay Mahadeokar

Hongzhao Huang

Andros Tjandra

Xiaohui Zhang

Frank Zhang

Christian FuegenGeoffrey Zweig

Michael L. Seltzer

Publisher

International Conference on Acoustics, Speech, and Signal Processing (ICASSP)

Related Publications

October 08, 2016

COMPUTER VISION

NLP

Learning Visual Features from Large Weakly Supervised Data | Facebook AI Research

Convolutional networks trained on large supervised datasets produce visual features which form the basis for the state-of-the-art in many computer-vision problems. Further improvements of these visual features will likely require even larger…

Armand Joulin, Laurens van der Maaten, Allan Jabri, Nicolas Vasilache

October 08, 2016

September 15, 2019

COMPUTER VISION

NLP

Sequence-to-Sequence Speech Recognition with Time-Depth Separable Convolutions | Facebook AI Research

We propose a fully convolutional sequence-to-sequence encoder architecture with a simple and efficient decoder. Our model improves WER on LibriSpeech while being an order of magnitude more efficient than a strong RNN baseline. Key to our…

Awni Hannun, Ann Lee, Qiantong Xu, Ronan Collobert

September 15, 2019

September 10, 2019

NLP

Bridging the Gap Between Relevance Matching and Semantic Matching for Short Text Similarity Modeling | Facebook AI Research

A core problem of information retrieval (IR) is relevance matching, which is to rank documents by relevance to a user’s query. On the other hand, many NLP problems, such as question answering and paraphrase identification, can be considered…

Jinfeng Rao, Linqing Liu, Yi Tay, Wei Yang, Peng Shi, Jimmy Lin

September 10, 2019

June 16, 2019

NLP

On the Idiosyncrasies of the Mandarin Chinese Classifier System | Facebook AI Research

While idiosyncrasies of the Chinese classifier system have been a richly studied topic among linguists (Adams and Conklin, 1973; Erbaugh, 1986; Lakoff, 1986), not much work has been done to quantify them with statistical methods. In this paper,…

Shijia Liu, Hongyuan Mei, Adina Williams, Ryan Cotterell

June 16, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.