RESEARCH

NLP

Transformer-based Acoustic Modeling for Hybrid Speech Recognition

May 4, 2020

Abstract

We propose and evaluate transformer-based acoustic models (AMs) for hybrid speech recognition. Several modeling choices are discussed in this work, including various positional embedding methods and an iterated loss to enable training deep transformers. We also present a preliminary study of using limited right context in transformer models, which makes it possible for streaming applications. We demonstrate that on the widely used Librispeech benchmark, our transformer-based AM outperforms the best published hybrid result by 19% to 26% relative when the standard n-gram language model (LM) is used. Combined with neural network LM for rescoring, our proposed approach achieves state-of-the-art results on Librispeech. Our findings are also confirmed on a much larger internal dataset.

Download the Paper

AUTHORS

Written by

Yongqiang Wang

Abdelrahman Mohamed

Duc Le

Chunxi Liu

Alex Xiao

Jay Mahadeokar

Hongzhao Huang

Andros Tjandra

Xiaohui Zhang

Frank Zhang

Christian FuegenGeoffrey Zweig

Michael L. Seltzer

Publisher

International Conference on Acoustics, Speech, and Signal Processing (ICASSP)

Related Publications

June 03, 2019

NLP

FAIRSEQ: A Fast, Extensible Toolkit for Sequence Modeling | Facebook AI Research

FAIRSEQ is an open-source sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language modeling, and other text generation tasks. The toolkit is based on PyTorch and supports…

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli

June 03, 2019

June 02, 2019

NLP

Cooperative Learning of Disjoint Syntax and Semantics | Facebook AI Research

There has been considerable attention devoted to models that learn to jointly infer an expression’s syntactic structure and its semantics. Yet, Nangia and Bowman (2018) has recently shown that the current best systems fail to learn the correct…

Serhii Havrylov, Germán Kruszewski, Armand Joulin

June 02, 2019

October 30, 2018

NLP

Loss in Translation: Learning Bilingual Word Mapping with a Retrieval Criterion | Facebook AI Research

Continuous word representations learned separately on distinct languages can be aligned so that their words become comparable in a common space. Existing works typically solve a least-square regression problem to learn a rotation aligning a…

Armand Joulin, Piotr Bojanowski, Tomas Mikolov, Hervé Jégou, Edouard Grave

October 30, 2018

October 31, 2018

NLP

Understanding Back-Translation at Scale | Facebook AI Research

An effective method to improve neural machine translation with monolingual data is to augment the parallel training corpus with back-translations of target language sentences. This work broadens the understanding of back-translation and…

Sergey Edunov, Myle Ott, Michael Auli, David Grangier

October 31, 2018

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.