CORE MACHINE LEARNING

THEORY

Tilted Empirical Risk Minimization

May 7, 2021

Abstract

Empirical risk minimization (ERM) is typically designed to perform well on the average loss, which can result in estimators that are sensitive to outliers, generalize poorly, or treat subgroups unfairly. While many methods aim to address these problems individually, in this work, we explore them through a unified framework---tilted empirical risk minimization (TERM). In particular, we show that it is possible to flexibly tune the impact of individual losses through a straightforward extension to ERM using a hyperparameter called the tilt. We provide several interpretations of the resulting framework: We show that TERM can increase or decrease the influence of outliers, respectively, to enable fairness or robustness; has variance-reduction properties that can benefit generalization; and can be viewed as a smooth approximation to a superquantile method. We develop batch and stochastic first-order optimization methods for solving TERM, and show that the problem can be efficiently solved relative to common alternatives. Finally, we demonstrate that TERM can be used for a multitude of applications, such as enforcing fairness between subgroups, mitigating the effect of outliers, and handling class imbalance. TERM is not only competitive with existing solutions tailored to these individual problems, but can also enable entirely new applications, such as simultaneously addressing outliers and promoting fairness.

Download the Paper

AUTHORS

Written by

Tian Li

Ahmad Beirami

Maziar Sanjabi

Virginia Smith

Publisher

ICLR 2021

Research Topics

Core Machine Learning

Theory

Related Publications

June 17, 2019

COMPUTER VISION

DMC-Net: Generating Discriminative Motion Cues for Fast Compressed Video Action Recognition | Facebook AI Research

Zheng Shou, Xudong Lin, Yannis Kalantidis, Laura Sevilla-Lara, Marcus Rohrbach, Shih-Fu Chang, Zhicheng Yan

June 17, 2019

June 18, 2019

COMPUTER VISION

Embodied Question Answering in Photorealistic Environments with Point Cloud Perception | Facebook AI Research

Erik Wijmans, Samyak Datta, Oleksandr Maksymets, Abhishek Das, Georgia Gkioxari, Stefan Lee, Irfan Essa, Devi Parikh, Dhruv Batra

June 18, 2019

July 28, 2019

SPEECH & AUDIO

COMPUTER VISION

Learning to Optimize Halide with Tree Search and Random Programs | Facebook AI Research

Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li, Michaël Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Durand, Jonathan Ragan-Kelley

July 28, 2019

June 17, 2019

COMPUTER VISION

Graph-Based Global Reasoning Networks | Facebook AI Research

Yunpeng Chen, Marcus Rohrbach, Zhicheng Yan, Shuicheng Yan, Jiashi Feng, Yannis Kalantidis

June 17, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.