RESEARCH

INTEGRITY

TIES: Temporal Interaction Embeddings for Enhancing Social Media Integrity at Facebook

August 27, 2020

Abstract

Since its inception, Facebook has become an integral part of the online social community. People rely on Facebook to make connections with others and build communities. As a result, it is paramount to protect the integrity of such a rapidly growing network in a fast and scalable manner. In this paper, we present our efforts to protect various social media entities at Facebook from people who try to abuse our platform. We present a novel Temporal Interaction EmbeddingS (TIES) model that is designed to capture rogue social interactions and flag them for further suitable actions. TIES is a supervised, deep learning, production ready model at Facebook-scale networks. Prior works on integrity problems are mostly focused on capturing either only static or certain dynamic features of social entities. In contrast, TIES can capture both these variant behaviors in a unified model owing to the recent strides made in the domains of graph embedding and deep sequential pattern learning. To show the real-world impact of TIES, we present a few applications especially for preventing spread of misinformation, fake account detection, and reducing ads payment risks in order to enhance Facebook platform’s integrity.

Download the Paper

AUTHORS

Written by

Nima Noorshams

Saurabh Verma

Aude Hofleitner

Publisher

Knowledge Discovery and Data Mining (KDD) 2020

Research Topics

Artificial Intelligence

Integrity

Related Publications

June 14, 2020

Iterative Answer Prediction with Pointer-Augmented Multimodal Transformers for TextVQA | Facebook AI Research

Many visual scenes contain text that carries crucial information, and it is thus essential to understand text in images for downstream reasoning tasks. For example, a deep water label on a warning sign warns people about the danger in the…

Ronghang Hu, Amanpreet Singh, Trevor Darrell, Marcus Rohrbach

June 14, 2020

April 25, 2020

Permutation Equivariant Models for Compositional Generalization in Language | Facebook AI Research

Humans understand novel sentences by composing meanings and roles of core language components. In contrast, neural network models for natural language modeling fail when such compositional generalization is required. The main contribution of…

Jonathan Gordon, David Lopez-Paz, Marco Baroni, Diane Bouchacourt

April 25, 2020

September 15, 2019

SPEECH & AUDIO

Who Needs Words? Lexicon-Free Speech Recognition | Facebook AI Research

Lexicon-free speech recognition naturally deals with the problem of out-of-vocabulary (OOV) words. In this paper, we show that character-based language models (LM) can perform as well as word-based LMs for speech recognition, in word error…

Tatiana Likhomanenko, Gabriel Synnaeve, Ronan Collobert

September 15, 2019

September 10, 2019

NLP

Bridging the Gap Between Relevance Matching and Semantic Matching for Short Text Similarity Modeling | Facebook AI Research

A core problem of information retrieval (IR) is relevance matching, which is to rank documents by relevance to a user’s query. On the other hand, many NLP problems, such as question answering and paraphrase identification, can be considered…

Jinfeng Rao, Linqing Liu, Yi Tay, Wei Yang, Peng Shi, Jimmy Lin

September 10, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.