RESEARCH

NLP

The emergence of number and syntax units in LSTM language models

June 2, 2019

Abstract

Recent work has shown that LSTMs trained on a generic language modeling objective capture syntax-sensitive generalizations such as long-distance number agreement. We have however no mechanistic understanding of how they accomplish this remarkable feat. Some have conjectured it depends on heuristics that do not truly take hierarchical structure into account. We present here a detailed study of the inner mechanics of number tracking in LSTMs at the single neuron level. We discover that long-distance number information is largely managed by two “number units”. Importantly, the behaviour of these units is partially controlled by other units independently shown to track syntactic structure. We conclude that LSTMs are, to some extent, implementing genuinely syntactic processing mechanisms, paving the way to a more general understanding of grammatical encoding in LSTMs.

Download the Paper

Related Publications

September 10, 2019

NLP

Bridging the Gap Between Relevance Matching and Semantic Matching for Short Text Similarity Modeling | Facebook AI Research

A core problem of information retrieval (IR) is relevance matching, which is to rank documents by relevance to a user’s query. On the other hand, many NLP problems, such as question answering and paraphrase identification, can be considered…

Jinfeng Rao, Linqing Liu, Yi Tay, Wei Yang, Peng Shi, Jimmy Lin

September 10, 2019

June 11, 2019

NLP

COMPUTER VISION

Adversarial Inference for Multi-Sentence Video Description | Facebook AI Research

While significant progress has been made in the image captioning task, video description is still in its infancy due to the complex nature of video data. Generating multi-sentence descriptions for long videos is even more challenging. Among the…

Jae Sung Park, Marcus Rohrbach, Trevor Darrell, Anna Rohrbach

June 11, 2019

May 17, 2019

NLP

Unsupervised Hyper-alignment for Multilingual Word Embeddings | Facebook AI Research

We consider the problem of aligning continuous word representations, learned in multiple languages, to a common space. It was recently shown that, in the case of two languages, it is possible to learn such a mapping without supervision. This…

Jean Alaux, Edouard Grave, Marco Cuturi, Armand Joulin

May 17, 2019

July 27, 2019

NLP

Unsupervised Question Answering by Cloze Translation | Facebook AI Research

Obtaining training data for Question Answering (QA) is time-consuming and resource-intensive, and existing QA datasets are only available for limited domains and languages. In this work, we explore to what extent high quality training data is…

Patrick Lewis, Ludovic Denoyer, Sebastian Riedel

July 27, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.