RESEARCH

The Early Phase of Neural Network Training

February 21, 2020

Abstract

Recent studies have shown that many important aspects of neural network learning take place within the very earliest iterations or epochs of training. For example, sparse, trainable subnetworks emerge (Frankle et al., 2019), gradient descent moves into a small subspace (Gur-Ari et al., 2018), and the network undergoes a critical period (Achille et al., 2019). Here we examine the changes that deep neural networks undergo during this early phase of training. We perform extensive measurements of the network state and its changes during these early iterations of training, and leverage the framework of Frankle et al. (2019) to quantitatively probe the weight distribution and its reliance on various aspects of the dataset. We find that, within this framework, deep networks are not robust to random weights with fixed signs, and that weight distributions are highly non-independent even after only a few hundred iterations. Despite this, pre-training with blurred inputs or an auxiliary self-supervised task can approximate the changes in supervised networks, suggesting that these changes are label-agnostic, though labels significantly accelerate this process. Together, these results help to elucidate the network changes occurring during this pivotal initial period of learning.

Download the Paper

AUTHORS

Written by

Ari Morcos

David Schwab

Jonathan Frankle

Publisher

ICLR

Related Publications

December 15, 2021

RESEARCH

Sample-and-threshold differential privacy: Histograms and applications

Akash Bharadwaj, Graham Cormode

December 15, 2021

January 09, 2021

RESEARCH

COMPUTER VISION

Tarsier: Evolving Noise Injection in Super-Resolution GANs

Baptiste Rozière, Camille Couprie, Olivier Teytaud, Andry Rasoanaivo, Hanhe Lin, Nathanaël Carraz Rakotonirina, Vlad Hosu

January 09, 2021

January 09, 2021

RESEARCH

Improved Sample Complexity for Incremental Autonomous Exploration in MDPs

Jean Tarbouriech, Alessandro Lazaric, Matteo Pirotta, Michal Valko

January 09, 2021

December 07, 2020

RESEARCH

COMPUTER VISION

Labelling unlabelled videos from scratch with multi-modal self-supervision

Mandela Patrick

December 07, 2020