RESEARCH

NLP

Strategies for Structuring Story Generation

July 26, 2019

Abstract

Writers often rely on plans or sketches to write long stories, but most current language models generate word by word from left to right. We explore coarse-to-fine models for creating narrative texts of several hundred words, and introduce new models which decompose stories by abstracting over actions and entities. The model first generates the predicate-argument structure of the text, where different mentions of the same entity are marked with placeholder tokens. It then generates a surface realization of the predicate-argument structure, and finally replaces the entity placeholders with context-sensitive names and references. Human judges prefer the stories from our models to a wide range of previous approaches to hierarchical text generation. Extensive analysis shows that our methods can help improve the diversity and coherence of events and entities in generated stories.

Download the Paper

Related Publications

June 02, 2019

SPEECH & AUDIO

NLP

The emergence of number and syntax units in LSTM language models | Facebook AI Research

Recent work has shown that LSTMs trained on a generic language modeling objective capture syntax-sensitive generalizations such as long-distance number agreement. We have however no mechanistic understanding of how they accomplish this…

Yair Lakretz, Germán Kruszewski, Theo Desbordes, Dieuwke Hupkes, Stanislas Dehaene, Marco Baroni

June 02, 2019

June 01, 2019

SPEECH & AUDIO

NLP

Neural Models of Text Normalization for Speech Applications | Facebook AI Research

Machine learning, including neural network techniques, have been applied to virtually every domain in natural language processing. One problem that has been somewhat resistant to effective machine learning solutions is text normalization for…

Hao Zhang, Richard Sproat, Axel H. Ng, Felix Stahlberg, Xiaochang Peng, Kyle Gorman, Brian Roark

June 01, 2019

May 17, 2019

COMPUTER VISION

SPEECH & AUDIO

GLoMo: Unsupervised Learning of Transferable Relational Graphs | Facebook AI Research

Modern deep transfer learning approaches have mainly focused on learning generic feature vectors from one task that are transferable to other tasks, such as word embeddings in language and pretrained convolutional features in vision. However,…

Zhilin Yang, Jake (Junbo) Zhao, Bhuwan Dhingra, Kaiming He, William W. Cohen, Ruslan Salakhutdinov, Yann LeCun

May 17, 2019

May 06, 2019

COMPUTER VISION

NLP

No Training Required: Exploring Random Encoders for Sentence Classification | Facebook AI Research

We explore various methods for computing sentence representations from pre-trained word embeddings without any training, i.e., using nothing but random parameterizations. Our aim is to put sentence embeddings on more solid footing by 1) looking…

John Wieting, Douwe Kiela

May 06, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.