July 12, 2020
The success of adversarial formulations in machine learning has brought renewed motivation for smooth games. In this work, we focus on the class of stochastic Hamiltonian methods and provide the first convergence guarantees for certain classes of stochastic smooth games. We propose a novel unbiased estimator for the stochastic Hamiltonian gradient descent (SHGD) and highlight its benefits. Using tools from the optimization literature we show that SHGD converges linearly to the neighbourhood of a stationary point. To guarantee convergence to the exact solution, we analyze SHGD with a decreasing step-size and we also present the first stochastic variance reduced Hamiltonian method. Our results provide the first global non-asymptotic last-iterate convergence guarantees for the class of stochastic unconstrained bilinear games and for the more general class of stochastic games that satisfy a “sufficiently bilinear” condition, notably including some non-convex non-concave problems. We supplement our analysis with experiments on stochastic bilinear and sufficiently bilinear games, where our theory is shown to be tight, and on simple adversarial machine learning formulations.
Written by
Nicolas Loizou
Hugo Berard
Alexia Jolicoeur-Martineau
Pascal VincentSimon Lacoste-Julien
Ioannis Mitliagkas
Publisher
International Conference on Machine Learning (ICML)
Research Topics
Artificial Intelligence
June 02, 2019
This paper explores the problem of ranking short social media posts with respect to user queries using neural networks. Instead of starting with a complex architecture, we proceed from the bottom up and examine the effectiveness of a simple,…
Peng Shi, Jinfeng Rao, Jimmy Lin
June 02, 2019
June 09, 2019
Over the past few years, neural networks were proven vulnerable to adversarial images: targeted but imperceptible image perturbations lead to drastically different predictions. We show that adversarial vulnerability increases with the gradients…
Carl-Johann Simon-Gabriel, Yann Ollivier, Bernhard Scholkopf, Leon Bottou, David Lopez-Paz
June 09, 2019
May 31, 2019
Abuse on the Internet represents a significant societal problem of our time. Previous research on automated abusive language detection in Twitter has shown that community-based profiling of users is a promising technique for this task. However,…
Pushkar Mishra, Marco Del Tredici, Helen Yannakoudakis, Ekaterina Shutova
May 31, 2019
June 01, 2019
Reduced models are simplified versions of a given domain, designed to accelerate the planning process. Interest in reduced models has grown since the surprising success of determinization in the first international probabilistic planning…
Luis Pineda, Shlomo Zilberstein
June 01, 2019