NLP

Staircase Attention for Recurrent Processing of Sequences

December 29, 2022

Abstract

Attention mechanisms have become a standard tool for sequence modeling tasks, in particular by stacking self-attention layers over the entire input sequence as in the Transformer architecture. In this work we introduce a novel attention procedure called staircase attention that, unlike self-attention, operates across the sequence (in time) recurrently processing the input by adding another step of processing. A step in the staircase comprises of backward tokens (encoding the sequence so far seen) and forward tokens (ingesting a new part of the sequence). Thus our model can trade off performance and compute, by increasing the amount of recurrence through time and depth. Staircase attention is shown to be able to solve tasks that involve tracking that conventional Transformers cannot, due to this recurrence. Further, it is shown to provide improved modeling power for the same size model (number of parameters) compared to self-attentive Transformers on large language modeling and dialogue tasks, yielding significant perplexity gains.

Download the Paper

AUTHORS

Written by

Dexter Ju

Jason Weston

Sainbayar Sukhbaatar

Stephen Roller

Publisher

neurips

Related Publications

February 24, 2023

NLP

LLaMA: Open and Efficient Foundation Language Models

Faisal Azhar, Hugo Touvron, Armand Joulin, Aurelien Rodriguez, Baptiste Rozière, Eric Hambro, Gautier Izacard, Guillaume Lample, Marie-Anne Lachaux, Naman Goyal, Thibaut Lavril, Timothee Lacroix, Xavier Martinet, Edouard Grave

February 24, 2023

February 20, 2023

INTEGRITY

NLP

UNIREX: A Unified Learning Framework for Language Model Rationale Extraction

Maziar Sanjabi, Aaron Chan, Hamed Firooz, Lambert Mathias, Liang Tan, Shaoliang Nie, Xiaochang Peng, Xiang Ren

February 20, 2023

December 31, 2022

NLP

Textless Speech Emotion Conversion using Discrete & Decomposed Representations

Yossef Mordechay Adi, Abdelrahman Mohamed, Adam Polyak, Emmanuel Dupoux, Evgeny Kharitonov, Jade Copet, Morgane Rivière, Tu Anh Nguyen, Wei-Ning Hsu, Felix Kreuk

December 31, 2022

December 15, 2022

NLP

Baked-in State Probing

Shubham Toshniwal, Karen Livescu, Kevin Gimpel, Sam Wiseman

December 15, 2022

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.