COMPUTER VISION

SoundSpaces: Audio-Visual Navigation in 3D Environments

August 23, 2020

Abstract

Moving around in the world is naturally a multisensory experience, but today’s embodied agents are deaf—restricted to solely their visual perception of the environment. We introduce audio-visual navigation for complex, acoustically and visually realistic 3D environments. By both seeing and hearing, the agent must learn to navigate to a sounding object. We propose a multi-modal deep reinforcement learning approach to train navigation policies end-to-end from a stream of egocentric audio-visual observations, allowing the agent to (1) discover elements of the geometry of the physical space indicated by the reverberating audio and (2) detect and follow sound-emitting targets. We further introduce SoundSpaces: a first-of-its-kind dataset of audio renderings based on geometrical acoustic simulations for two sets of publicly available 3D environments (Matterport3D and Replica), and we instrument Habitat to support the new sensor, making it possible to insert arbitrary sound sources in an array of real-world scanned environments. Our results show that audio greatly benefits embodied visual navigation in 3D spaces, and our work lays groundwork for new research in embodied AI with audio-visual perception. Project: http://vision.cs.utexas.edu/projects/audio_visual_navigation.

Download the Paper

AUTHORS

Written by

Changan Chen

Unnat Jain

Carl Schissler

Sebastia Vicenc Amengual Gari

Ziad Al-Halah

Vamsi Krishna Ithapu

Philip Robinson

Kristen Grauman

Publisher

European Conference on Computer Vision (ECCV)

Research Topics

Computer Vision

Related Publications

June 15, 2019

COMPUTER VISION

FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search | Facebook AI Research

Designing accurate and efficient ConvNets for mobile devices is challenging because the design space is combinatorially large. Due to this, previous neural architecture search (NAS) methods are computationally expensive. ConvNet architecture…

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing Jia, Kurt Keutzer

June 15, 2019

April 28, 2019

COMPUTER VISION

Inverse Path Tracing for Joint Material and Lighting Estimation | Facebook AI Research

Modern computer vision algorithms have brought significant advancement to 3D geometry reconstruction. However, illumination and material reconstruction remain less studied, with current approaches assuming very simplified models for materials…

Dejan Azinović, Tzu-Mao Li, Anton Kaplanyan, Matthias Nießner

April 28, 2019

June 14, 2019

COMPUTER VISION

Thinking Outside the Pool: Active Training Image Creation for Relative Attributes | Facebook AI Research

Current wisdom suggests more labeled image data is always better, and obtaining labels is the bottleneck. Yet curating a pool of sufficiently diverse and informative images is itself a challenge. In particular, training image curation is…

Aron Yu, Kristen Grauman

June 14, 2019

September 09, 2018

COMPUTER VISION

DDRNet: Depth Map Denoising and Refinement for Consumer Depth Cameras Using Cascaded CNNs | Facebook AI Research

Consumer depth sensors are more and more popular and come to our daily lives marked by its recent integration in the latest iPhone X. However, they still suffer from heavy noises which dramatically limit their applications. Although plenty of…

Shi Yan, Chenglei Wu, Lizhen Wang, Feng Xu, Liang An, Kaiwen Guo, Yebin Liu

September 09, 2018

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.