RESEARCH

NLP

Self-Training for End-to-End Speech Recognition

April 24, 2020

Abstract

We revisit self-training in the context of end-to-end speech recognition. We demonstrate that training with pseudo-labels can substantially improve the accuracy of a baseline model. Key to our approach are a strong baseline acoustic and language model used to generate the pseudo-labels, filtering mechanisms tailored to common errors from sequence-to-sequence models, and a novel ensemble approach to increase pseudo-label diversity. Experiments on the LibriSpeech corpus show that with an ensemble of four models and label filtering, self-training yields a 33.9% relative improvement in WER compared with a baseline trained on 100 hours of labelled data in the noisy speech setting. In the clean speech setting, self-training recovers 59.3% of the gap between the baseline and an oracle model, which is at least 93.8% relatively higher than what previous approaches can achieve.

Download the Paper

AUTHORS

Publisher

International Conference on Acoustics, Speech, and Signal Processing (ICASSP)

Related Publications

June 16, 2019

COMPUTER VISION

3D human pose estimation in video with temporal convolutions and semi-supervised training | Facebook AI Research

In this work, we demonstrate that 3D poses in video can be effectively estimated with a fully convolutional model based on dilated temporal convolutions over 2D keypoints. We also introduce back-projection, a simple and effective…

Dario Pavllo, Christoph Feichtenhofer, David Grangier, Michael Auli

June 16, 2019

June 03, 2019

NLP

FAIRSEQ: A Fast, Extensible Toolkit for Sequence Modeling | Facebook AI Research

FAIRSEQ is an open-source sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language modeling, and other text generation tasks. The toolkit is based on PyTorch and supports…

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli

June 03, 2019

June 02, 2019

NLP

Cooperative Learning of Disjoint Syntax and Semantics | Facebook AI Research

There has been considerable attention devoted to models that learn to jointly infer an expression’s syntactic structure and its semantics. Yet, Nangia and Bowman (2018) has recently shown that the current best systems fail to learn the correct…

Serhii Havrylov, Germán Kruszewski, Armand Joulin

June 02, 2019

June 15, 2019

COMPUTER VISION

FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search | Facebook AI Research

Designing accurate and efficient ConvNets for mobile devices is challenging because the design space is combinatorially large. Due to this, previous neural architecture search (NAS) methods are computationally expensive. ConvNet architecture…

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing Jia, Kurt Keutzer

June 15, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.