Research

Robust Multi-agent Counterfactual Prediction

December 10, 2019

Abstract

We consider the problem of using logged data to make predictions about what would happen if we changed the ‘rules of the game’ in a multi-agent system. This task is difficult because in many cases we observe actions individuals take but not their private information or their full reward functions. In addition, agents are strategic, so when the rules change, they will also change their actions. Existing methods (e.g. structural estimation, inverse reinforcement learning) assume that agents’ behavior comes from optimizing some utility or that the system is in equilibrium. They make counterfactual predictions by using observed actions to learn the underlying utility function (a.k.a. type) and then solving for the equilibrium of the counterfactual environment. This approach imposes heavy assumptions such as the rationality of the agents being observed and a correct model of the environment and agents’ utility functions. We propose a method for analyzing the sensitivity of counterfactual conclusions to violations of these assumptions, which we call robust multi-agent counterfactual prediction (RMAC). We provide a first-order method for computing RMAC bounds. We apply RMAC to classic environments in market design: auctions, school choice, and social choice.

Download the Paper

Related Publications

November 27, 2022

Core Machine Learning

Neural Attentive Circuits

Nicolas Ballas, Bernhard Schölkopf, Chris Pal, Francesco Locatello, Li Erran, Martin Weiss, Nasim Rahaman, Yoshua Bengio

November 27, 2022

November 27, 2022

Near Instance-Optimal PAC Reinforcement Learning for Deterministic MDPs

Andrea Tirinzoni, Aymen Al Marjani, Emilie Kaufmann

November 27, 2022

November 16, 2022

NLP

Memorization Without Overfitting: Analyzing the Training Dynamics of Large Language Models

Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer

November 16, 2022

November 10, 2022

Computer Vision

Learning State-Aware Visual Representations from Audible Interactions

Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado

November 10, 2022

April 08, 2021

Responsible AI

Integrity

Towards measuring fairness in AI: the Casual Conversations dataset

Caner Hazirbas, Joanna Bitton, Brian Dolhansky, Jacqueline Pan, Albert Gordo, Cristian Canton Ferrer

April 08, 2021

April 30, 2018

The Role of Minimal Complexity Functions in Unsupervised Learning of Semantic Mappings | Facebook AI Research

Tomer Galanti, Lior Wolf, Sagie Benaim

April 30, 2018

April 30, 2018

Computer Vision

NAM – Unsupervised Cross-Domain Image Mapping without Cycles or GANs | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

December 11, 2019

Speech & Audio

Computer Vision

Hyper-Graph-Network Decoders for Block Codes | Facebook AI Research

Eliya Nachmani, Lior Wolf

December 11, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.