RESEARCH

NLP

Quantifying the Semantic Core of Gender Systems

October 09, 2019

Abstract

Many of the world’s languages employ grammatical gender on the lexeme. For example, in Spanish, the word for "house (casa) is feminine, whereas the word for "paper" (papel) is masculine. To a speaker of a genderless language, this assignment seems to exist with neither rhyme nor reason. But is the assignment of inanimate nouns to grammatical genders truly arbitrary? We present the first large-scale investigation of the arbitrariness of noun–gender assignments. To that end, we use canonical correlation analysis to correlate the grammatical gender of inanimate nouns with an externally grounded definition of their lexical semantics. We find that 18 languages exhibit a significant correlation between grammatical gender and lexical semantics.

Download the Paper

AUTHORS

Written by

Adina Williams

Ryan Cotterell

Damian Blasi

Hanna Wallach

Lawrence Wolf-Sonkin

Publisher

EMNLP

Related Publications

November 28, 2022

RESEARCH

CORE MACHINE LEARNING

Neural Attentive Circuits

Nicolas Ballas, Bernhard Schölkopf, Chris Pal, Francesco Locatello, Li Erran, Martin Weiss, Nasim Rahaman, Yoshua Bengio

November 28, 2022

November 27, 2022

RESEARCH

Near Instance-Optimal PAC Reinforcement Learning for Deterministic MDPs

Andrea Tirinzoni, Aymen Al Marjani, Emilie Kaufmann

November 27, 2022

November 16, 2022

RESEARCH

NLP

Memorization Without Overfitting: Analyzing the Training Dynamics of Large Language Models

Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer

November 16, 2022

November 10, 2022

RESEARCH

COMPUTER VISION

Learning State-Aware Visual Representations from Audible Interactions

Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado

November 10, 2022

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.