RESEARCH

ML APPLICATIONS

Online Bayesian Persuasion

December 6, 2020

Abstract

In Bayesian persuasion, an informed sender has to design a signaling scheme that discloses the right amount of information so as to influence the behavior of a self-interested receiver. This kind of strategic interaction is ubiquitous in real-world economic scenarios. However, the seminal model by Kamenica and Gentzkow makes some stringent assumptions that limit its applicability in practice. One of the most limiting assumptions is, arguably, that the sender is required to know the receiver’s utility function to compute an optimal signaling scheme. We relax this assumption through an online learning framework in which the sender repeatedly faces a receiver whose type is unknown and chosen adversarially at each round from a finite set of possible types. We are interested in no-regret algorithms prescribing a signaling scheme at each round of the repeated interaction with performances close to that of a best-in-hindsight signaling scheme. First, we prove a hardness result on the per-round running time required to achieve no-α-regret for any α < 1. Then, we provide algorithms for the full and partial feedback models with regret bounds sublinear in the number of rounds and polynomial in the size of the instance.

Download the Paper

AUTHORS

Written by

Matteo Castiglioni

Andrea Celli

Alberto Marchesi

Nicola Gatti

Related Publications

June 14, 2020

Iterative Answer Prediction with Pointer-Augmented Multimodal Transformers for TextVQA | Facebook AI Research

Many visual scenes contain text that carries crucial information, and it is thus essential to understand text in images for downstream reasoning tasks. For example, a deep water label on a warning sign warns people about the danger in the…

Ronghang Hu, Amanpreet Singh, Trevor Darrell, Marcus Rohrbach

June 14, 2020

April 25, 2020

Decoupling Representation and Classifier for Long-Tailed Recognition | Facebook AI Research

The long-tail distribution of the visual world poses great challenges for deep learning based classification models on how to handle the class imbalance problem.…

Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, Yannis Kalantidis

April 25, 2020

June 17, 2019

COMPUTER VISION

DMC-Net: Generating Discriminative Motion Cues for Fast Compressed Video Action Recognition | Facebook AI Research

Motion has shown to be useful for video understanding, where motion is typically represented by optical flow. However, computing flow from video frames is very time-consuming. Recent works directly leverage the motion vectors and residuals…

Zheng Shou, Xudong Lin, Yannis Kalantidis, Laura Sevilla-Lara, Marcus Rohrbach, Shih-Fu Chang, Zhicheng Yan

June 17, 2019

June 18, 2019

COMPUTER VISION

Embodied Question Answering in Photorealistic Environments with Point Cloud Perception | Facebook AI Research

To help bridge the gap between internet vision-style problems and the goal of vision for embodied perception we instantiate a large-scale navigation task – Embodied Question Answering [1] in photo-realistic environments (Matterport 3D). We…

Erik Wijmans, Samyak Datta, Oleksandr Maksymets, Abhishek Das, Georgia Gkioxari, Stefan Lee, Irfan Essa, Devi Parikh, Dhruv Batra

June 18, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.