Neural Relational Autoregression for High-Resolution COVID-19 Forecasting

October 1, 2020


Forecasting COVID-19 poses unique challenges due to the novelty of the disease, its unknown characteristics, and substantial but varying interventions to reduce its spread. To improve the quality and robustness of forecasts, we propose a new method which aims to disentangle region-specific factors -- such as demographics, enacted policies, and mobility -- from disease-inherent factors that influence its spread. For this purpose, we combine recurrent neural networks with a vector autoregressive model and train the joint model with a specific regularization scheme that increases the coupling between regions. This approach is akin to using Granger causality as a relational inductive bias and allows us to train high-resolution models by borrowing statistical strength across regions. In our experiments, we observe that our method achieves strong performance in predicting the spread of COVID-19 when compared to state-of-the-art forecasts.

Download the Paper


Written by

Matthew Le

Mark Ibrahim

Levent Sagun

Timothee Lacroix

Maximilian Nickel


Facebook AI

Related Publications



Learning Visual Features from Large Weakly Supervised Data | Facebook AI Research

Convolutional networks trained on large supervised datasets produce visual features which form the basis for the state-of-the-art in many computer-vision problems. Further improvements of these visual features will likely require even larger…

Armand Joulin, Laurens van der Maaten, Allan Jabri, Nicolas Vasilache



Sequence-to-Sequence Speech Recognition with Time-Depth Separable Convolutions | Facebook AI Research

We propose a fully convolutional sequence-to-sequence encoder architecture with a simple and efficient decoder. Our model improves WER on LibriSpeech while being an order of magnitude more efficient than a strong RNN baseline. Key to our…

Awni Hannun, Ann Lee, Qiantong Xu, Ronan Collobert


Bridging the Gap Between Relevance Matching and Semantic Matching for Short Text Similarity Modeling | Facebook AI Research

A core problem of information retrieval (IR) is relevance matching, which is to rank documents by relevance to a user’s query. On the other hand, many NLP problems, such as question answering and paraphrase identification, can be considered…

Jinfeng Rao, Linqing Liu, Yi Tay, Wei Yang, Peng Shi, Jimmy Lin


On the Idiosyncrasies of the Mandarin Chinese Classifier System | Facebook AI Research

While idiosyncrasies of the Chinese classifier system have been a richly studied topic among linguists (Adams and Conklin, 1973; Erbaugh, 1986; Lakoff, 1986), not much work has been done to quantify them with statistical methods. In this paper,…

Shijia Liu, Hongyuan Mei, Adina Williams, Ryan Cotterell

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.