Neural Manifold Ordinary Differential Equations

December 10, 2020


To better conform to data geometry, recent deep generative modelling techniques adapt Euclidean constructions to non-Euclidean spaces. In this paper, we study normalizing flows on manifolds. Previous work has developed flow models for specific cases; however, these advancements hand craft layers on a manifold-by-manifold basis, restricting generality and inducing cumbersome design constraints. We overcome these issues by introducing Neural Manifold Ordinary Differential Equations, a manifold generalization of Neural ODEs, which enables the construction of Manifold Continuous Normalizing Flows (MCNFs). MCNFs require only local geometry (therefore generalizing to arbitrary manifolds) and compute probabilities with continuous change of variables (allowing for a simple and expressive flow construction). We find that leveraging continuous manifold dynamics produces a marked improvement for both density estimation and downstream tasks.

Download the Paper


Written by

Aaron Lou

Derek Lim

Isay Katsman

Leo Huang

Qingxuan Jiang

Ser-Nam Lim

Research Topics

Core Machine learning

Related Publications

May 17, 2019



GLoMo: Unsupervised Learning of Transferable Relational Graphs | Facebook AI Research

Modern deep transfer learning approaches have mainly focused on learning generic feature vectors from one task that are transferable to other tasks, such as word embeddings in language and pretrained convolutional features in vision. However,…

Zhilin Yang, Jake (Junbo) Zhao, Bhuwan Dhingra, Kaiming He, William W. Cohen, Ruslan Salakhutdinov, Yann LeCun

May 17, 2019

May 06, 2019



No Training Required: Exploring Random Encoders for Sentence Classification | Facebook AI Research

We explore various methods for computing sentence representations from pre-trained word embeddings without any training, i.e., using nothing but random parameterizations. Our aim is to put sentence embeddings on more solid footing by 1) looking…

John Wieting, Douwe Kiela

May 06, 2019

May 06, 2019



Efficient Lifelong Learning with A-GEM | Facebook AI Research

In lifelong learning, the learner is presented with a sequence of tasks, incrementally building a data-driven prior which may be leveraged to speed up learning of a new task. In this work, we investigate the efficiency of current lifelong…

Arslan Chaudhry, Marc'Aurelio Ranzato, Marcus Rohrbach, Mohamed Elhoseiny

May 06, 2019

May 06, 2019


Learning Exploration Policies for Navigation | Facebook AI Research

Numerous past works have tackled the problem of task-driven navigation. But, how to effectively explore a new environment to enable a variety of down-stream tasks has received much less attention. In this work, we study how agents can…

Tao Chen, Saurabh Gupta, Abhinav Gupta

May 06, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.