RESEARCH

Multi-modal Content Localization in Videos Using Weak Supervision

June 13, 2019

Abstract

Identifying the temporal segments in a video that contain content relevant to a category or task is a difficult but interesting problem. This has applications in fine-grained video indexing and retrieval. Part of the difficulty in this problem comes from the lack of supervision since large-scale annotation of localized segments containing the content of interest is very expensive. In this paper, we propose to use the category assigned to an entire video as weak supervision to our model. Using such weak supervision, our model learns to do joint video level categorization and localization of content relevant to the category of the video. This can be thought of as providing both a classification label and an explanation in the form of the relevant regions of the video. Extensive experiments on a large scale dataset show our model can achieve good localization performance without any direct supervision and can combine signals from multiple modalities like speech and vision.

Download the Paper

Related Publications

June 14, 2020

Iterative Answer Prediction with Pointer-Augmented Multimodal Transformers for TextVQA | Facebook AI Research

Ronghang Hu, Amanpreet Singh, Trevor Darrell, Marcus Rohrbach

June 14, 2020

June 17, 2019

COMPUTER VISION

DMC-Net: Generating Discriminative Motion Cues for Fast Compressed Video Action Recognition | Facebook AI Research

Zheng Shou, Xudong Lin, Yannis Kalantidis, Laura Sevilla-Lara, Marcus Rohrbach, Shih-Fu Chang, Zhicheng Yan

June 17, 2019

June 18, 2019

COMPUTER VISION

Embodied Question Answering in Photorealistic Environments with Point Cloud Perception | Facebook AI Research

Erik Wijmans, Samyak Datta, Oleksandr Maksymets, Abhishek Das, Georgia Gkioxari, Stefan Lee, Irfan Essa, Devi Parikh, Dhruv Batra

June 18, 2019

August 01, 2019

NLP

Simple and Effective Curriculum Pointer-Generator Networks for Reading Comprehension over Long Narratives | Facebook AI Research

Yi Tay, Shuohang Wang, Luu Anh Tuan, Jie Fu, Minh C. Phan, Xingdi Yuan, Jinfeng Rao, Siu Cheung Hui, Aston Zhang

August 01, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.