Research

Computer Vision

Metric Learning with Adaptive Density Discrimination

May 2, 2016

Abstract

Distance metric learning (DML) approaches learn a transformation to a representation space where distance is in correspondence with a predefined notion of similarity. While such models offer a number of compelling benefits, it has been difficult for these to compete with modern classification algorithms in performance and even in feature extraction.

In this work, we propose a novel approach explicitly designed to address a number of subtle yet important issues which have stymied earlier DML algorithms. It maintains an explicit model of the distributions of the different classes in representation space. It then employs this knowledge to adaptively assess similarity, and achieve local discrimination by penalizing class distribution overlap.

We demonstrate the effectiveness of this idea on several tasks. Our approach achieves state-of-the-art classification results on a number of fine-grained visual recognition datasets, surpassing the standard softmax classifier and outperforming triplet loss by a relative margin of 30-40%. In terms of computational performance, it alleviates training inefficiencies in the traditional triplet loss, reaching the same error in 5-30 times fewer iterations. Beyond classification, we further validate the saliency of the learnt representations via their attribute concentration and hierarchy recovery properties, achieving 10-25% relative gains on the softmax classifier and 25-50% on triplet loss in these tasks.

Download the Paper

Related Publications

November 10, 2022

Computer Vision

Learning State-Aware Visual Representations from Audible Interactions

Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado

November 10, 2022

November 06, 2022

Computer Vision

Neural Basis Models for Interpretability

Filip Radenovic, Abhimanyu Dubey, Dhruv Mahajan

November 06, 2022

October 25, 2022

Theseus: A Library for Differentiable Nonlinear Optimization

Mustafa Mukadam, Austin Wang, Brandon Amos, Daniel DeTone, Jing Dong, Joe Ortiz, Luis Pineda, Maurizio Monge, Ricky Chen, Shobha Venkataraman, Stuart Anderson, Taosha Fan, Paloma Sodhi

October 25, 2022

October 22, 2022

Computer Vision

Time-rEversed diffusioN tEnsor Transformer: A new TENET of Few-Shot Object Detection

Naila Murray, Lei Wang, Piotr Koniusz, Shan Zhang

October 22, 2022

April 30, 2018

Computer Vision

NAM – Unsupervised Cross-Domain Image Mapping without Cycles or GANs | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

December 11, 2019

Speech & Audio

Computer Vision

Hyper-Graph-Network Decoders for Block Codes | Facebook AI Research

Eliya Nachmani, Lior Wolf

December 11, 2019

April 30, 2018

NLP

Speech & Audio

Identifying Analogies Across Domains | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

November 01, 2018

NLP

Computer Vision

Non-Adversarial Unsupervised Word Translation | Facebook AI Research

Yedid Hoshen, Lior Wolf

November 01, 2018

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.