Low Level Control of a Quadrotor with Deep Model-Based Reinforcement Learning

July 29, 2019


Designing effective low-level robot controllers often entail platform-specific implementations that require manual heuristic parameter tuning, significant system knowledge, or long design times. With the rising number of robotic and mechatronic systems deployed across areas ranging from industrial automation to intelligent toys, the need for a general approach to generating low-level controllers is increasing. To address the challenge of rapidly generating low-level controllers, we argue for using model-based reinforcement learning (MBRL) trained on relatively small amounts of automatically generated (i.e., without system simulation) data. In this paper, we explore the capabilities of MBRL on a Crazyflie centimeter-scale quadrotor with rapid dynamics to predict and control at ≤ 50Hz. To our knowledge, this is the first use of MBRL for controlled hover of a quadrotor using only on-board sensors, direct motor input signals, and no initial dynamics knowledge. Our controller leverages rapid simulation of a neural network forward dynamics model on a GPU-enabled base station, which then transmits the best current action to the quadrotor firmware via radio. In our experiments, the quadrotor achieved hovering capability of up to 6 seconds with 3 minutes of experimental training data.

Download the Paper

Related Publications

June 14, 2020

Iterative Answer Prediction with Pointer-Augmented Multimodal Transformers for TextVQA | Facebook AI Research

Ronghang Hu, Amanpreet Singh, Trevor Darrell, Marcus Rohrbach

June 14, 2020

April 25, 2020

Permutation Equivariant Models for Compositional Generalization in Language | Facebook AI Research

Jonathan Gordon, David Lopez-Paz, Marco Baroni, Diane Bouchacourt

April 25, 2020

September 15, 2019

Speech & Audio

Who Needs Words? Lexicon-Free Speech Recognition | Facebook AI Research

Tatiana Likhomanenko, Gabriel Synnaeve, Ronan Collobert

September 15, 2019

September 10, 2019


Bridging the Gap Between Relevance Matching and Semantic Matching for Short Text Similarity Modeling | Facebook AI Research

Jinfeng Rao, Linqing Liu, Yi Tay, Wei Yang, Peng Shi, Jimmy Lin

September 10, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.