Research

Reinforcement Learni9ng

Learning with AMIGo: Adversarially Motivated Intrinsic Goals

March 26, 2021

Abstract

A key challenge for reinforcement learning (RL) consists of learning in environments with sparse extrinsic rewards. In contrast to current RL methods, humans are able to learn new skills with little or no reward by using various forms of intrinsic motivation. We propose AMIGo, a novel agent incorporating -- as form of meta-learning -- a goal-generating teacher that proposes Adversarially Motivated Intrinsic Goals to train a goal-conditioned "student" policy in the absence of (or alongside) environment reward. Specifically, through a simple but effective "constructively adversarial" objective, the teacher learns to propose increasingly challenging -- yet achievable -- goals that allow the student to learn general skills for acting in a new environment, independent of the task to be solved. We show that our method generates a natural curriculum of self-proposed goals which ultimately allows the agent to solve challenging procedurally-generated tasks where other forms of intrinsic motivation and state-of-the-art RL methods fail.

Download the Paper

AUTHORS

Written by

Andres Campero

Roberta Raileanu

Heinrich Kuttler

Joshua B. Tenenbaum

Tim Rocktaschel

Edward Grefenstette

Publisher

ICLR 2021

Research Topics

Reinforcement Learning

Related Publications

December 05, 2020

Robotics

Reinforcement Learni9ng

Neural Dynamic Policies for End-to-End Sensorimotor Learning

Deepak Pathak, Abhinav Gupta, Mustafa Mukadam, Shikhar Bahl

December 05, 2020

December 07, 2020

Reinforcement Learni9ng

Joint Policy Search for Collaborative Multi-agent Imperfect Information Games

Yuandong Tian, Qucheng Gong, Tina Jiang

December 07, 2020

March 13, 2021

Reinforcement Learni9ng

On the Importance of Hyperparameter Optimization for Model-based Reinforcement Learning

Baohe Zhang, Raghu Rajan, Luis Pineda, Nathan Lambert, Andre Biedenkapp, Kurtland Chua, Frank Hutter, Roberto Calandra

March 13, 2021

October 10, 2020

Computer Vision

Reinforcement Learni9ng

Active MR k-space Sampling with Reinforcement Learning

Luis Pineda, Sumana Basu, Adriana Romero,Roberto CalandraRoberto Calandra, Michal Drozdzal

October 10, 2020

December 05, 2020

Reinforcement Learni9ng

An Asymptotically Optimal Primal-Dual Incremental Algorithm for Contextual Linear Bandits

Andrea Tirinzonin, Matteo Pirotta, Marcello Restelli, Alessandro Lazaric

December 05, 2020

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.