RESEARCH

COMPUTER VISION

Learning to Optimize Halide with Tree Search and Random Programs

July 28, 2019

Abstract

We present a new algorithm to automatically schedule Halide programs for high-performance image processing and deep learning. We significantly improve upon the performance of previous methods, which considered a limited subset of schedules. We define a parameterization of possible schedules much larger than prior methods and use a variant of beam search to search over it. The search optimizes runtime predicted by a cost model based on a combination of new derived features and machine learning. We train the cost model by generating and featurizing hundreds of thousands of random programs and schedules. We show that this approach operates effectively with or without autotuning. It produces schedules which are on average almost twice as fast as the existing Halide autoscheduler without autotuning, or more than twice as fast with, and is the first automatic scheduling algorithm to significantly outperform human experts on average.

Download the Paper

Related Publications

October 08, 2016

COMPUTER VISION

NLP

Learning Visual Features from Large Weakly Supervised Data | Facebook AI Research

Convolutional networks trained on large supervised datasets produce visual features which form the basis for the state-of-the-art in many computer-vision problems. Further improvements of these visual features will likely require even larger…

Armand Joulin, Laurens van der Maaten, Allan Jabri, Nicolas Vasilache

October 08, 2016

September 15, 2019

COMPUTER VISION

NLP

Sequence-to-Sequence Speech Recognition with Time-Depth Separable Convolutions | Facebook AI Research

We propose a fully convolutional sequence-to-sequence encoder architecture with a simple and efficient decoder. Our model improves WER on LibriSpeech while being an order of magnitude more efficient than a strong RNN baseline. Key to our…

Awni Hannun, Ann Lee, Qiantong Xu, Ronan Collobert

September 15, 2019

June 17, 2019

COMPUTER VISION

Graph-Based Global Reasoning Networks | Facebook AI Research

Globally modeling and reasoning over relations between regions can be beneficial for many computer vision tasks on both images and videos. Convolutional Neural Networks (CNNs) excel at modeling local relations by convolution operations, but…

Yunpeng Chen, Marcus Rohrbach, Zhicheng Yan, Shuicheng Yan, Jiashi Feng, Yannis Kalantidis

June 17, 2019

June 17, 2019

COMPUTER VISION

DMC-Net: Generating Discriminative Motion Cues for Fast Compressed Video Action Recognition | Facebook AI Research

Motion has shown to be useful for video understanding, where motion is typically represented by optical flow. However, computing flow from video frames is very time-consuming. Recent works directly leverage the motion vectors and residuals…

Zheng Shou, Xudong Lin, Yannis Kalantidis, Laura Sevilla-Lara, Marcus Rohrbach, Shih-Fu Chang, Zhicheng Yan

June 17, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.