RESEARCH

COMPUTER VISION

Learning Exploration Policies for Navigation

April 08, 2019

Abstract

Numerous past works have tackled the problem of task-driven navigation. But, how to effectively explore a new environment to enable a variety of down-stream tasks has received much less attention. In this work, we study how agents can autonomously explore realistic and complex 3D environments without the context of task-rewards. We propose a learning-based approach and investigate different policy architectures, reward functions, and training paradigms. We find that use of policies with spatial memory that are bootstrapped with imitation learning and finally finetuned with coverage rewards derived purely from on-board sensors can be effective at exploring novel environments. We show that our learned exploration policies can explore better than classical approaches based on geometry alone and generic learning-based exploration techniques. Finally, we also show how such task-agnostic exploration can be used for down-stream tasks. Videos are available at https://sites.google.com/view/exploration-for-nav/.

Download the Paper

AUTHORS

Written by

Abhinav Gupta

Saurabh Gupta

Tao Chen

Publisher

ICLR

Research Topics

Computer Vision

Related Publications

March 20, 2024

COMPUTER VISION

SceneScript: Reconstructing Scenes With An Autoregressive Structured Language Model

Armen Avetisyan, Chris Xie, Henry Howard-Jenkins, Tsun-Yi Yang, Samir Aroudj, Suvam Patra, Fuyang Zhang, Duncan Frost, Luke Holland, Campbell Orme, Jakob Julian Engel, Edward Miller, Richard Newcombe, Vasileios Balntas

March 20, 2024

February 13, 2024

GRAPHICS

COMPUTER VISION

IM-3D: Iterative Multiview Diffusion and Reconstruction for High-Quality 3D Generation

Luke Melas-Kyriazi, Iro Laina, Christian Rupprecht, Natalia Neverova, Andrea Vedaldi, Oran Gafni, Filippos Kokkinos

February 13, 2024

January 25, 2024

COMPUTER VISION

LRR: Language-Driven Resamplable Continuous Representation against Adversarial Tracking Attacks

Felix Xu, Di Lin, Jianjun Zhao, Jianlang Chen, Lei Ma, Qing Guo, Wei Feng, Xuhong Ren

January 25, 2024

December 08, 2023

COMPUTER VISION

Learning Fine-grained View-Invariant Representations from Unpaired Ego-Exo Videos via Temporal Alignment

Sherry Xue, Kristen Grauman

December 08, 2023

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.