RESEARCH

NLP

Learning Cooperative Visual Dialog Agents with Deep Reinforcement Learning

October 22, 2017

Abstract

We introduce the first goal-driven training for visual question answering and dialog agents. Specifically, we pose a cooperative ‘image guessing’ game between two agents – Q-BOT and A-BOT– who communicate in natural language dialog so that Q-BOT can select an unseen image from a lineup of images. We use deep reinforcement learning (RL) to learn the policies of these agents end-to-end – from pixels to multi-agent multi-round dialog to game reward.

We demonstrate two experimental results.

First, as a ‘sanity check’ demonstration of pure RL (from scratch), we show results on a synthetic world, where the agents communicate in ungrounded vocabularies, i.e., symbols with no pre-specified meanings (X, Y, Z). We find that two bots invent their own communication protocol and start using certain symbols to ask/answer about certain visual attributes (shape/color/style). Thus, we demonstrate the emergence of grounded language and communication among ‘visual’ dialog agents with no human supervision.

Second, we conduct large-scale real-image experiments on the VisDial dataset [5], where we perform supervised pretraining with human-dialog data and show that the RL fine-tuned agents significantly outperform their supervised counterparts. Interestingly, the RL Q-BOT learns to ask questions that A-BOT is good at, ultimately resulting in more informative dialog and a better team. Further, pretraining with human-dialog data (in English) ensures human-interpretability and scope for pairing these agents with humans.

Download the Paper

Related Publications

August 01, 2019

NLP

Simple and Effective Curriculum Pointer-Generator Networks for Reading Comprehension over Long Narratives | Facebook AI Research

Yi Tay, Shuohang Wang, Luu Anh Tuan, Jie Fu, Minh C. Phan, Xingdi Yuan, Jinfeng Rao, Siu Cheung Hui, Aston Zhang

August 01, 2019

July 29, 2019

NLP

Improved Zero-shot Neural Machine Translation via Ignoring Spurious Correlations | Facebook AI Research

Jiatao Gu, Yong Wang, Kyunghyun Cho, Victor O.K. Li

July 29, 2019

June 11, 2019

NLP

COMPUTER VISION

Adversarial Inference for Multi-Sentence Video Description | Facebook AI Research

Jae Sung Park, Marcus Rohrbach, Trevor Darrell, Anna Rohrbach

June 11, 2019

June 10, 2019

NLP

COMPUTER VISION

Mixture Models for Diverse Machine Translation: Tricks of the Trade | Facebook AI Research

Tianxiao Shen, Myle Ott, Michael Auli, Marc'Aurelio Ranzato

June 10, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.