RESEARCH

COMPUTER VISION

Lead2Gold: Towards exploiting the full potential of noisy transcriptions for speech recognition

December 13, 2019

Abstract

The transcriptions used to train an Automatic Speech Recognition (ASR) system may contain errors. Usually, either a quality control stage discards transcriptions with too many errors, or the noisy transcriptions are used as is. We introduce Lead2Gold, a method to train an ASR system that exploits the full potential of noisy transcriptions. Based on a noise model of transcription errors, Lead2Gold searches for better transcriptions of the training data with a beam search that takes this noise model into account. The beam search is differentiable and does not require a forced alignment step, thus the whole system is trained end-to-end. Lead2Gold can be viewed as a new loss function that can be used on top of any sequence-to-sequence deep neural network. We conduct proof-of-concept experiments on noisy transcriptions generated from letter corruptions with different noise levels. We show that Lead2Gold obtains a better ASR accuracy than a competitive baseline which does not account for the (artificially-introduced) transcription noise.

Download the Paper

Related Publications

May 17, 2019

COMPUTER VISION

SPEECH & AUDIO

GLoMo: Unsupervised Learning of Transferable Relational Graphs | Facebook AI Research

Modern deep transfer learning approaches have mainly focused on learning generic feature vectors from one task that are transferable to other tasks, such as word embeddings in language and pretrained convolutional features in vision. However,…

Zhilin Yang, Jake (Junbo) Zhao, Bhuwan Dhingra, Kaiming He, William W. Cohen, Ruslan Salakhutdinov, Yann LeCun

May 17, 2019

May 06, 2019

COMPUTER VISION

NLP

No Training Required: Exploring Random Encoders for Sentence Classification | Facebook AI Research

We explore various methods for computing sentence representations from pre-trained word embeddings without any training, i.e., using nothing but random parameterizations. Our aim is to put sentence embeddings on more solid footing by 1) looking…

John Wieting, Douwe Kiela

May 06, 2019

May 06, 2019

NLP

COMPUTER VISION

Efficient Lifelong Learning with A-GEM | Facebook AI Research

In lifelong learning, the learner is presented with a sequence of tasks, incrementally building a data-driven prior which may be leveraged to speed up learning of a new task. In this work, we investigate the efficiency of current lifelong…

Arslan Chaudhry, Marc'Aurelio Ranzato, Marcus Rohrbach, Mohamed Elhoseiny

May 06, 2019

May 06, 2019

COMPUTER VISION

Learning Exploration Policies for Navigation | Facebook AI Research

Numerous past works have tackled the problem of task-driven navigation. But, how to effectively explore a new environment to enable a variety of down-stream tasks has received much less attention. In this work, we study how agents can…

Tao Chen, Saurabh Gupta, Abhinav Gupta

May 06, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.