RESEARCH

ML APPLICATIONS

IR-VIC: Unsupervised Discovery of Sub-goals for Transfer in RL

January 5, 2021

Abstract

We propose a novel framework to identify subgoals useful for exploration in sequential decision making tasks under partial observability. We utilize the variational intrinsic control framework (Gregor et.al., 2016) which maximizes empowerment – the ability to reliably reach a diverse set of states and show how to identify sub-goals as states with high necessary option information through an information theoretic regularizer. Despite being discovered without explicit goal supervision, our subgoals provide better exploration and sample complexity on challenging grid-world navigation tasks compared to supervised counterparts in prior work.

Download the Paper

AUTHORS

Written by

Nirbhay Modhe

Prithvijit Chattopadhyay

Mohit Sharma

Abhishek Das

Devi Parikh

Dhruv Batra

Ramakrishna Vedantam

Publisher

International Joint Conference on Artificial Intelligence (IJCAI)

Research Topics

Artificial Intelligence

Human and Machine Learning

Related Publications

June 14, 2020

Iterative Answer Prediction with Pointer-Augmented Multimodal Transformers for TextVQA | Facebook AI Research

Ronghang Hu, Amanpreet Singh, Trevor Darrell, Marcus Rohrbach

June 14, 2020

June 17, 2019

COMPUTER VISION

DMC-Net: Generating Discriminative Motion Cues for Fast Compressed Video Action Recognition | Facebook AI Research

Zheng Shou, Xudong Lin, Yannis Kalantidis, Laura Sevilla-Lara, Marcus Rohrbach, Shih-Fu Chang, Zhicheng Yan

June 17, 2019

June 18, 2019

COMPUTER VISION

Embodied Question Answering in Photorealistic Environments with Point Cloud Perception | Facebook AI Research

Erik Wijmans, Samyak Datta, Oleksandr Maksymets, Abhishek Das, Georgia Gkioxari, Stefan Lee, Irfan Essa, Devi Parikh, Dhruv Batra

June 18, 2019

August 01, 2019

NLP

Simple and Effective Curriculum Pointer-Generator Networks for Reading Comprehension over Long Narratives | Facebook AI Research

Yi Tay, Shuohang Wang, Luu Anh Tuan, Jie Fu, Minh C. Phan, Xingdi Yuan, Jinfeng Rao, Siu Cheung Hui, Aston Zhang

August 01, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.