RESEARCH

Intrinsic Motivation for Encouraging Synergistic Behavior

April 25, 2020

Abstract

We study the role of intrinsic motivation as an exploration bias for reinforcement learning in sparse-reward synergistic tasks, which are tasks where multiple agents must work together to achieve a goal they could not individually. Our key idea is that a good guiding principle for intrinsic motivation in synergistic tasks is to take actions which affect the world in ways that would not be achieved if the agents were acting on their own. Thus, we propose to incentivize agents to take (joint) actions whose effects cannot be predicted via a composition of the predicted effect for each individual agent. We study two instantiations of this idea, one based on the true states encountered, and another based on a dynamics model trained concurrently with the policy. While the former is simpler, the latter has the benefit of being analytically differentiable with respect to the action taken. We validate our approach in robotic bimanual manipulation and multi-agent locomotion tasks with sparse rewards; we find that our approach yields more efficient learning than both 1) training with only the sparse reward and 2) using the typical surprise-based formulation of intrinsic motivation, which does not bias toward synergistic behavior. Videos are available on the project webpage: https://sites.google.com/view/iclr2020-synergistic.

Download the Paper

AUTHORS

Written by

Rohan Chitnis

Shubham Tulsiani

Saurabh Gupta

Abhinav Gupta

Publisher

International Conference on Learning Representations (ICLR)

Recent Publications

November 27, 2022

CORE MACHINE LEARNING

Neural Attentive Circuits

Nicolas Ballas, Bernhard Schölkopf, Chris Pal, Francesco Locatello, Li Erran, Martin Weiss, Nasim Rahaman, Yoshua Bengio

November 27, 2022

November 27, 2022

Near Instance-Optimal PAC Reinforcement Learning for Deterministic MDPs

Andrea Tirinzoni, Aymen Al Marjani, Emilie Kaufmann

November 27, 2022

November 16, 2022

NLP

Memorization Without Overfitting: Analyzing the Training Dynamics of Large Language Models

Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer

November 16, 2022

November 10, 2022

COMPUTER VISION

Learning State-Aware Visual Representations from Audible Interactions

Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado

November 10, 2022

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.