RESEARCH

NLP

Information-Theoretic Probing for Linguistic Structure

June 26, 2020

Abstract

The success of neural networks on a diverse set of NLP tasks has led researchers to question how much these networks actually "know" about natural language. Probes are a natural way of assessing this. When probing, a researcher chooses a linguistic task and trains a supervised model to predict annotations in that linguistic task from the network's learned representations. If the probe does well, the researcher may conclude that the representations encode knowledge related to the task. A commonly held belief is that using simpler models as probes is better; the logic is that simpler models will identify linguistic structure, but not learn the task itself. We propose an information-theoretic operationalization of probing as estimating mutual information that contradicts this received wisdom: one should always select the highest performing probe one can, even if it is more complex, since it will result in a tighter estimate, and thus reveal more of the linguistic information inherent in the representation. The experimental portion of our paper focuses on empirically estimating the mutual information between a linguistic property and BERT, comparing these estimates to several baselines. We evaluate on a set of ten typologically diverse languages often underrepresented in NLP research—plus English—totaling eleven languages.

Download the Paper

AUTHORS

Written by

Adina Williams

Joseph Valvoda

Ran Zmigrod

Rowan Hall Maudsley

Ryan Cotterell

Tiago Pimentel

Publisher

ACL

Related Publications

December 15, 2021

RESEARCH

Sample-and-threshold differential privacy: Histograms and applications

Akash Bharadwaj, Graham Cormode

December 15, 2021

December 06, 2021

NLP

Pay Better Attention to Attention: Head Selection in Multilingual and Multi-Domain Sequence Modeling

Hongyu Gong, Yun Tang, Juan Miguel Pino, Xian Li

December 06, 2021

November 16, 2021

NLP

Can Transformers Jump Around Right in Natural Language? Assessing Performance Transfer from SCAN

Rahma Chaabouni, Roberto Dessì, Evgeny Kharitonov

November 16, 2021

November 08, 2021

NLP

CORE MACHINE LEARNING

DOBF: A Deobfuscation Pre-Training Objective for Programming Languages

Baptiste Rozière, Marie-Anne Lachaux, Marc Szafraniec, Guillaume Lample

November 08, 2021