In Defense of Grid Features for Visual Question Answering

June 14, 2020


Popularized as ‘bottom-up’ attention, bounding box (or region) based visual features have recently surpassed vanilla grid-based convolutional features as the de facto standard for vision and language tasks like visual question answering (VQA). However, it is not clear whether the advantages of regions (e.g. better localization) are the key reasons for the success of bottom-up attention. In this paper, we revisit grid features for VQA, and find they can work surprisingly well – running more than an order of magnitude faster with the same accuracy (e.g. if pre-trained in a similar fashion). Through extensive experiments, we verify that this observation holds true across different VQA models, datasets, and generalizes well to other tasks like image captioning. As grid features make the model design and training process much simpler, this enables us to train them end-to-end and also use a more flexible network design. We learn VQA models end-to-end, from pixels directly to answers, and show that strong performance is achievable without using any region annotations in pre-training. We hope our findings help further improve the scientific understanding and the practical application of VQA. Code and features will be made available.

Download the Paper


Written by

Huaizu Jiang

Ishan Misra

Marcus Rohrbach

Erik Learned-Miller

Xinlei Chen


Conference on Computer Vision and Pattern Recognition (CVPR)

Research Topics

Computer Vision

Related Publications

June 17, 2019


Graph-Based Global Reasoning Networks | Facebook AI Research

Globally modeling and reasoning over relations between regions can be beneficial for many computer vision tasks on both images and videos. Convolutional Neural Networks (CNNs) excel at modeling local relations by convolution operations, but…

Yunpeng Chen, Marcus Rohrbach, Zhicheng Yan, Shuicheng Yan, Jiashi Feng, Yannis Kalantidis

June 17, 2019

June 17, 2019


DMC-Net: Generating Discriminative Motion Cues for Fast Compressed Video Action Recognition | Facebook AI Research

Motion has shown to be useful for video understanding, where motion is typically represented by optical flow. However, computing flow from video frames is very time-consuming. Recent works directly leverage the motion vectors and residuals…

Zheng Shou, Xudong Lin, Yannis Kalantidis, Laura Sevilla-Lara, Marcus Rohrbach, Shih-Fu Chang, Zhicheng Yan

June 17, 2019

June 18, 2019


Embodied Question Answering in Photorealistic Environments with Point Cloud Perception | Facebook AI Research

To help bridge the gap between internet vision-style problems and the goal of vision for embodied perception we instantiate a large-scale navigation task – Embodied Question Answering [1] in photo-realistic environments (Matterport 3D). We…

Erik Wijmans, Samyak Datta, Oleksandr Maksymets, Abhishek Das, Georgia Gkioxari, Stefan Lee, Irfan Essa, Devi Parikh, Dhruv Batra

June 18, 2019

June 11, 2019



Adversarial Inference for Multi-Sentence Video Description | Facebook AI Research

While significant progress has been made in the image captioning task, video description is still in its infancy due to the complex nature of video data. Generating multi-sentence descriptions for long videos is even more challenging. Among the…

Jae Sung Park, Marcus Rohrbach, Trevor Darrell, Anna Rohrbach

June 11, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.