RESEARCH

COMPUTER VISION

IMP: Instance Mask Projection for High Accuracy Semantic Segmentation of Things

October 27, 2019

Abstract

In this work, we present a new operator, called Instance Mask Projection (IMP), which projects a predicted Instance Segmentation as a new feature for semantic segmentation. It also supports back propagation so is trainable end-to-end. By adding this operator, we introduce a new paradigm which combines top-down and bottom-up information in semantic segmentation. Our experiments show the effectiveness of IMP on both Clothing Parsing (with complex layering, large deformations, and non-convex objects), and on Street Scene Segmentation (with many overlapping instances and small objects). On the Varied Clothing Parsing dataset (VCP), we show instance mask projection can improve 3 points on mIOU from a state-of-the-art Panoptic FPN segmentation approach. On the ModaNet clothing parsing dataset, we show a dramatic improvement of 20.4% absolutely compared to existing baseline semantic segmentation results. In addition, the instance mask projection operator works well on other (non-clothing) datasets, providing an improvement of 3 points in mIOU on Thing classes of Cityscapes, a self-driving dataset, on top of a state-of-the-art approach.

Download the Paper

Related Publications

June 17, 2019

COMPUTER VISION

DMC-Net: Generating Discriminative Motion Cues for Fast Compressed Video Action Recognition | Facebook AI Research

Zheng Shou, Xudong Lin, Yannis Kalantidis, Laura Sevilla-Lara, Marcus Rohrbach, Shih-Fu Chang, Zhicheng Yan

June 17, 2019

June 18, 2019

COMPUTER VISION

Embodied Question Answering in Photorealistic Environments with Point Cloud Perception | Facebook AI Research

Erik Wijmans, Samyak Datta, Oleksandr Maksymets, Abhishek Das, Georgia Gkioxari, Stefan Lee, Irfan Essa, Devi Parikh, Dhruv Batra

June 18, 2019

July 28, 2019

SPEECH & AUDIO

COMPUTER VISION

Learning to Optimize Halide with Tree Search and Random Programs | Facebook AI Research

Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li, Michaël Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Durand, Jonathan Ragan-Kelley

July 28, 2019

June 17, 2019

COMPUTER VISION

Graph-Based Global Reasoning Networks | Facebook AI Research

Yunpeng Chen, Marcus Rohrbach, Zhicheng Yan, Shuicheng Yan, Jiashi Feng, Yannis Kalantidis

June 17, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.