RESEARCH

NLP

Hierarchical Decision Making by Generating and Following Natural Language Instructions

December 2, 2019

Abstract

We explore using latent natural language instructions as an expressive and compositional representation of complex actions for hierarchical decision making. Rather than directly selecting micro-actions, our agent first generates a latent plan in natural language, which is then executed by a separate model. We introduce a challenging real-time strategy game environment in which the actions of a large number of units must be coordinated across long time scales. We gather a dataset of 76 thousand pairs of instructions and executions from human play, and train instructor and executor models. Experiments show that models using natural language as a latent variable significantly outperform models that directly imitate human actions. The compositional structure of language proves crucial to its effectiveness for action representation. We also release our code, models and data2.

Download the Paper

Related Publications

June 02, 2019

SPEECH & AUDIO

NLP

The emergence of number and syntax units in LSTM language models | Facebook AI Research

Recent work has shown that LSTMs trained on a generic language modeling objective capture syntax-sensitive generalizations such as long-distance number agreement. We have however no mechanistic understanding of how they accomplish this…

Yair Lakretz, Germán Kruszewski, Theo Desbordes, Dieuwke Hupkes, Stanislas Dehaene, Marco Baroni

June 02, 2019

June 01, 2019

SPEECH & AUDIO

NLP

Neural Models of Text Normalization for Speech Applications | Facebook AI Research

Machine learning, including neural network techniques, have been applied to virtually every domain in natural language processing. One problem that has been somewhat resistant to effective machine learning solutions is text normalization for…

Hao Zhang, Richard Sproat, Axel H. Ng, Felix Stahlberg, Xiaochang Peng, Kyle Gorman, Brian Roark

June 01, 2019

May 17, 2019

COMPUTER VISION

SPEECH & AUDIO

GLoMo: Unsupervised Learning of Transferable Relational Graphs | Facebook AI Research

Modern deep transfer learning approaches have mainly focused on learning generic feature vectors from one task that are transferable to other tasks, such as word embeddings in language and pretrained convolutional features in vision. However,…

Zhilin Yang, Jake (Junbo) Zhao, Bhuwan Dhingra, Kaiming He, William W. Cohen, Ruslan Salakhutdinov, Yann LeCun

May 17, 2019

May 06, 2019

COMPUTER VISION

NLP

No Training Required: Exploring Random Encoders for Sentence Classification | Facebook AI Research

We explore various methods for computing sentence representations from pre-trained word embeddings without any training, i.e., using nothing but random parameterizations. Our aim is to put sentence embeddings on more solid footing by 1) looking…

John Wieting, Douwe Kiela

May 06, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.