RESEARCH

NLP

Hide and Speak: Towards Deep Neural Networks for Speech Steganography

October 25, 2020

Abstract

Steganography is the science of hiding a secret message within an ordinary public message, which is referred to as Carrier. Traditionally, digital signal processing techniques, such as least significant bit encoding, were used for hiding messages. In this paper, we explore the use of deep neural networks as steganographic functions for speech data. We showed that steganography models proposed for vision are less suitable for speech, and propose a new model that includes the short-time Fourier transform and inverse-short-time Fourier transform as differentiable layers within the network, thus imposing a vital constraint on the network outputs. We empirically demonstrated the effectiveness of the proposed method comparing to deep learning based on several speech datasets and analyzed the results quantitatively and qualitatively. Moreover, we showed that the proposed approach could be applied to conceal multiple messages in a single carrier using multiple decoders or a single conditional decoder. Lastly, we evaluated our model under different channel distortions. Qualitative experiments suggest that modifications to the carrier are unnoticeable by human listeners and that the decoded messages are highly intelligible.

Download the Paper

AUTHORS

Written by

Felix Kreuk

Yossi Adi

Bhiksha Raj

Rita Singh

Joseph Keshet

Publisher

Interspeech

Related Publications

August 01, 2019

NLP

Simple and Effective Curriculum Pointer-Generator Networks for Reading Comprehension over Long Narratives | Facebook AI Research

This paper tackles the problem of reading comprehension over long narratives where documents easily span over thousands of tokens. We propose a curriculum learning (CL) based Pointer-Generator framework for reading/sampling over large…

Yi Tay, Shuohang Wang, Luu Anh Tuan, Jie Fu, Minh C. Phan, Xingdi Yuan, Jinfeng Rao, Siu Cheung Hui, Aston Zhang

August 01, 2019

July 29, 2019

NLP

Improved Zero-shot Neural Machine Translation via Ignoring Spurious Correlations | Facebook AI Research

Zero-shot translation, translating between language pairs on which a Neural Machine Translation (NMT) system has never been trained, is an emergent property when training the system in multilingual settings. However, naïve training for…

Jiatao Gu, Yong Wang, Kyunghyun Cho, Victor O.K. Li

July 29, 2019

June 11, 2019

NLP

COMPUTER VISION

Adversarial Inference for Multi-Sentence Video Description | Facebook AI Research

While significant progress has been made in the image captioning task, video description is still in its infancy due to the complex nature of video data. Generating multi-sentence descriptions for long videos is even more challenging. Among the…

Jae Sung Park, Marcus Rohrbach, Trevor Darrell, Anna Rohrbach

June 11, 2019

June 10, 2019

NLP

COMPUTER VISION

Mixture Models for Diverse Machine Translation: Tricks of the Trade | Facebook AI Research

Mixture models trained via EM are among the simplest, most widely used and well understood latent variable models in the machine learning literature. Surprisingly, these models have been hardly explored in text generation applications such as…

Tianxiao Shen, Myle Ott, Michael Auli, Marc'Aurelio Ranzato

June 10, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.