RESEARCH

SPEECH & AUDIO

Hearst Patterns Revisited: Automatic Hypernym Detection from Large Text Corpora

July 16, 2018

Abstract

Methods for unsupervised hypernym detection may broadly be categorized according to two paradigms: pattern-based and distributional methods. In this paper, we study the performance of both approaches on several hypernymy tasks and find that simple pattern-based methods consistently outperform distributional methods on common benchmark datasets. Our results show that pattern-based models provide important contextual constraints which are not yet captured in distributional methods.

Download the Paper

Related Publications

December 15, 2021

RESEARCH

Sample-and-threshold differential privacy: Histograms and applications

Akash Bharadwaj, Graham Cormode

December 15, 2021

August 30, 2021

SPEECH & AUDIO

NLP

A Two-stage Approach to Speech Bandwidth Extension

Yun Wang, Christian Fuegen, Didi Zhang, Gil Keren, Kaustubh Kalgaonkar, Ju Lin

August 30, 2021

January 09, 2021

RESEARCH

COMPUTER VISION

Tarsier: Evolving Noise Injection in Super-Resolution GANs

Baptiste Rozière, Camille Couprie, Olivier Teytaud, Andry Rasoanaivo, Hanhe Lin, Nathanaël Carraz Rakotonirina, Vlad Hosu

January 09, 2021

January 09, 2021

RESEARCH

Improved Sample Complexity for Incremental Autonomous Exploration in MDPs

Jean Tarbouriech, Alessandro Lazaric, Matteo Pirotta, Michal Valko

January 09, 2021

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.