RESEARCH

COMPUTER VISION

Graph-Based Global Reasoning Networks

June 17, 2019

Abstract

Globally modeling and reasoning over relations between regions can be beneficial for many computer vision tasks on both images and videos. Convolutional Neural Networks (CNNs) excel at modeling local relations by convolution operations, but they are typically inefficient at capturing global relations between distant regions and require stacking multiple convolution layers. In this work, we propose a new approach for reasoning globally in which a set of features are globally aggregated over the coordinate space and then projected to an interaction space where relational reasoning can be efficiently computed. After reasoning, relation-aware features are distributed back to the original coordinate space for down-stream tasks. We further present a highly efficient instantiation of the proposed approach and introduce the Global Reasoning unit (GloRe unit) that implements the coordinate-interaction space mapping by weighted global pooling and weighted broadcasting, and the relation reasoning via graph convolution on a small graph in interaction space. The proposed GloRe unit is lightweight, end-to-end trainable and can be easily plugged into existing CNNs for a wide range of tasks. Extensive experiments show our GloRe unit can consistently boost the performance of state-of-the-art backbone architectures, including ResNet [15, 16], ResNeXt [34], SE-Net [18] and DPN [9], for both 2D and 3D CNNs, on image classification, semantic segmentation and video action recognition task.

Download the Paper

Related Publications

June 17, 2019

COMPUTER VISION

Graph-Based Global Reasoning Networks | Facebook AI Research

Globally modeling and reasoning over relations between regions can be beneficial for many computer vision tasks on both images and videos. Convolutional Neural Networks (CNNs) excel at modeling local relations by convolution operations, but…

Yunpeng Chen, Marcus Rohrbach, Zhicheng Yan, Shuicheng Yan, Jiashi Feng, Yannis Kalantidis

June 17, 2019

June 17, 2019

COMPUTER VISION

DMC-Net: Generating Discriminative Motion Cues for Fast Compressed Video Action Recognition | Facebook AI Research

Motion has shown to be useful for video understanding, where motion is typically represented by optical flow. However, computing flow from video frames is very time-consuming. Recent works directly leverage the motion vectors and residuals…

Zheng Shou, Xudong Lin, Yannis Kalantidis, Laura Sevilla-Lara, Marcus Rohrbach, Shih-Fu Chang, Zhicheng Yan

June 17, 2019

June 18, 2019

COMPUTER VISION

Embodied Question Answering in Photorealistic Environments with Point Cloud Perception | Facebook AI Research

To help bridge the gap between internet vision-style problems and the goal of vision for embodied perception we instantiate a large-scale navigation task – Embodied Question Answering [1] in photo-realistic environments (Matterport 3D). We…

Erik Wijmans, Samyak Datta, Oleksandr Maksymets, Abhishek Das, Georgia Gkioxari, Stefan Lee, Irfan Essa, Devi Parikh, Dhruv Batra

June 18, 2019

June 11, 2019

NLP

COMPUTER VISION

Adversarial Inference for Multi-Sentence Video Description | Facebook AI Research

While significant progress has been made in the image captioning task, video description is still in its infancy due to the complex nature of video data. Generating multi-sentence descriptions for long videos is even more challenging. Among the…

Jae Sung Park, Marcus Rohrbach, Trevor Darrell, Anna Rohrbach

June 11, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.