RESEARCH

COMPUTER VISION

Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization

October 22, 2017

Abstract

We propose a technique for producing ‘visual explanations’ for decisions from a large class of Convolutional Neural Network (CNN)-based models, making them more transparent and explainable. Our approach – Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concept (say ‘dog’ in a classification network or a sequence of words in captioning network) flowing into the final convolutional layer to produce a coarse localization map highlighting the important regions in the image for predicting the concept. Unlike previous approaches, GradCAM is applicable to a wide variety of CNN model-families: (1) CNNs with fully-connected layers (e.g. VGG), (2) CNNs used for structured outputs (e.g. captioning), (3) CNNs used in tasks with multi-modal inputs (e.g. visual question answering) or reinforcement learning, all without architectural changes or re-training. We combine Grad-CAM with existing fine-grained visualizations to create a high-resolution class-discriminative visualization, Guided Grad-CAM, and apply it to image classification, image captioning, and visual question answering (VQA) models, including ResNet-based architectures. In the context of image classification models, our visualizations (a) lend insights into failure modes of these models (showing that seemingly unreasonable predictions have reasonable explanations), (b) outperform previous methods on the ILSVRC-15 weakly-supervised localization task, (c) are more faithful to the underlying model, and (d) help achieve model generalization by identifying dataset bias. For image captioning and VQA, our visualizations show even non-attention based models can localize inputs. Finally, we design and conduct human studies to measure if Grad-CAM explanations help users establish appropriate trust in predictions from deep networks and show that Grad-CAM helps untrained users successfully discern a ‘stronger’ deep network from a ‘weaker’ one even when both make identical predictions. Our code is available at Github along with a demo on CloudCV and video on YouTube.

Download the Paper

Related Publications

COMPUTER VISION

NLP

Learning Visual Features from Large Weakly Supervised Data | Facebook AI Research

Convolutional networks trained on large supervised datasets produce visual features which form the basis for the state-of-the-art in many computer-vision problems. Further improvements of these visual features will likely require even larger…

Armand Joulin, Laurens van der Maaten, Allan Jabri, Nicolas Vasilache

COMPUTER VISION

NLP

Sequence-to-Sequence Speech Recognition with Time-Depth Separable Convolutions | Facebook AI Research

We propose a fully convolutional sequence-to-sequence encoder architecture with a simple and efficient decoder. Our model improves WER on LibriSpeech while being an order of magnitude more efficient than a strong RNN baseline. Key to our…

Awni Hannun, Ann Lee, Qiantong Xu, Ronan Collobert

COMPUTER VISION

Graph-Based Global Reasoning Networks | Facebook AI Research

Globally modeling and reasoning over relations between regions can be beneficial for many computer vision tasks on both images and videos. Convolutional Neural Networks (CNNs) excel at modeling local relations by convolution operations, but…

Yunpeng Chen, Marcus Rohrbach, Zhicheng Yan, Shuicheng Yan, Jiashi Feng, Yannis Kalantidis

COMPUTER VISION

DMC-Net: Generating Discriminative Motion Cues for Fast Compressed Video Action Recognition | Facebook AI Research

Motion has shown to be useful for video understanding, where motion is typically represented by optical flow. However, computing flow from video frames is very time-consuming. Recent works directly leverage the motion vectors and residuals…

Zheng Shou, Xudong Lin, Yannis Kalantidis, Laura Sevilla-Lara, Marcus Rohrbach, Shih-Fu Chang, Zhicheng Yan

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.