RESEARCH

SPEECH & AUDIO

Forward Modeling for Partial Observation Strategy Games

December 3, 2018

Abstract

We formulate the problem of defogging as state estimation and future state prediction from previous, partial observations in the context of real-time strategy games. We propose to employ encoder-decoder neural networks for this task, and introduce proxy tasks and baselines for evaluation to assess their ability of capturing basic game rules and high-level dynamics. By combining convolutional neural networks and recurrent networks, we exploit spatial and sequential correlations and train well-performing models on a large dataset of human games of StarCraft®: Brood War®†. Finally, we demonstrate the relevance of our models to downstream tasks by applying them for enemy unit prediction in a state-of-the-art, rule-based StarCraft bot. We observe improvements in win rates against several strong community bots.

Download the Paper

Related Publications

June 15, 2019

COMPUTER VISION

FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search | Facebook AI Research

Designing accurate and efficient ConvNets for mobile devices is challenging because the design space is combinatorially large. Due to this, previous neural architecture search (NAS) methods are computationally expensive. ConvNet architecture…

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing Jia, Kurt Keutzer

June 15, 2019

April 28, 2019

COMPUTER VISION

Inverse Path Tracing for Joint Material and Lighting Estimation | Facebook AI Research

Modern computer vision algorithms have brought significant advancement to 3D geometry reconstruction. However, illumination and material reconstruction remain less studied, with current approaches assuming very simplified models for materials…

Dejan Azinović, Tzu-Mao Li, Anton Kaplanyan, Matthias Nießner

April 28, 2019

June 14, 2019

COMPUTER VISION

Thinking Outside the Pool: Active Training Image Creation for Relative Attributes | Facebook AI Research

Current wisdom suggests more labeled image data is always better, and obtaining labels is the bottleneck. Yet curating a pool of sufficiently diverse and informative images is itself a challenge. In particular, training image curation is…

Aron Yu, Kristen Grauman

June 14, 2019

September 09, 2018

COMPUTER VISION

DDRNet: Depth Map Denoising and Refinement for Consumer Depth Cameras Using Cascaded CNNs | Facebook AI Research

Consumer depth sensors are more and more popular and come to our daily lives marked by its recent integration in the latest iPhone X. However, they still suffer from heavy noises which dramatically limit their applications. Although plenty of…

Shi Yan, Chenglei Wu, Lizhen Wang, Feng Xu, Liang An, Kaiwen Guo, Yebin Liu

September 09, 2018

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.