December 09, 2019
Data-augmentation is key to the training of neural networks for image classifi- cation. This paper first shows that existing augmentations induce a significant discrepancy between the size of the objects seen by the classifier at train and test time: in fact, a lower train resolution improves the classification at test time! We then propose a simple strategy to optimize the classifier performance, that employs different train and test resolutions. It relies on a computationally cheap fine-tuning of the network at the test resolution. This enables training strong classifiers using small training images, and therefore significantly reduce the training time. For instance, we obtain 77.1% top-1 accuracy on ImageNet with a ResNet-50 trained on 128×128 images, and 79.8% with one trained at 224×224. A ResNeXt-101 32x48d pre-trained with weak supervision on 940 million 224×224 images and further optimized with our technique for test resolution 320×320 achieves 86.4% top-1 accuracy (top-5: 98.0%). To the best of our knowledge this is the highest ImageNet single-crop accuracy to date.
Publisher
NeurIPS
Research Topics
May 09, 2023
Rohit Girdhar, Alaa El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala, Armand Joulin, Ishan Misra
May 09, 2023
April 05, 2023
Alexander Kirillov, Alex Berg, Chloe Rolland, Eric Mintun, Hanzi Mao, Laura Gustafson, Nikhila Ravi, Piotr Dollar, Ross Girshick, Spencer Whitehead, Wan-Yen Lo
April 05, 2023
March 09, 2023
Bilal Porgali, Vítor Albiero, Jordan Ryda, Cristian Canton Ferrer, Caner Hazirbas
March 09, 2023
February 21, 2023
Felix Xu, Fuyuan Zhang, Hua Qi, Jianjun Zhao, Jianlang Chen, Lei Ma, Qing Guo, Zhijie Wang
February 21, 2023
Latest Work
Our Actions
Newsletter