RESEARCH

COMPUTER VISION

Fixing the train-test resolution discrepancy

December 09, 2019

Abstract

Data-augmentation is key to the training of neural networks for image classifi- cation. This paper first shows that existing augmentations induce a significant discrepancy between the size of the objects seen by the classifier at train and test time: in fact, a lower train resolution improves the classification at test time! We then propose a simple strategy to optimize the classifier performance, that employs different train and test resolutions. It relies on a computationally cheap fine-tuning of the network at the test resolution. This enables training strong classifiers using small training images, and therefore significantly reduce the training time. For instance, we obtain 77.1% top-1 accuracy on ImageNet with a ResNet-50 trained on 128×128 images, and 79.8% with one trained at 224×224. A ResNeXt-101 32x48d pre-trained with weak supervision on 940 million 224×224 images and further optimized with our technique for test resolution 320×320 achieves 86.4% top-1 accuracy (top-5: 98.0%). To the best of our knowledge this is the highest ImageNet single-crop accuracy to date.

Download the Paper

AUTHORS

Written by

Andrea Vedaldi

Hervé Jegou

Hugo Touvron

Matthijs Douze

Publisher

NeurIPS

Research Topics

Computer Vision

Related Publications

May 09, 2023

COMPUTER VISION

ImageBind: One Embedding Space To Bind Them All

Rohit Girdhar, Alaa El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala, Armand Joulin, Ishan Misra

May 09, 2023

April 05, 2023

COMPUTER VISION

Segment Anything

Alexander Kirillov, Alex Berg, Chloe Rolland, Eric Mintun, Hanzi Mao, Laura Gustafson, Nikhila Ravi, Piotr Dollar, Ross Girshick, Spencer Whitehead, Wan-Yen Lo

April 05, 2023

March 09, 2023

COMPUTER VISION

The Casual Conversations v2 Dataset

Bilal Porgali, Vítor Albiero, Jordan Ryda, Cristian Canton Ferrer, Caner Hazirbas

March 09, 2023

February 21, 2023

COMPUTER VISION

CORE MACHINE LEARNING

ArchRepair: Block-Level Architecture-Oriented Repairing for Deep Neural Networks

Felix Xu, Fuyuan Zhang, Hua Qi, Jianjun Zhao, Jianlang Chen, Lei Ma, Qing Guo, Zhijie Wang

February 21, 2023

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.