RESEARCH

COMPUTER VISION

Feature Pyramid Networks for Object Detection

July 21, 2017

Abstract

Feature pyramids are a basic component in recognition systems for detecting objects at different scales. But recent deep learning object detectors have avoided pyramid representations, in part because they are compute and memory intensive. In this paper, we exploit the inherent multi-scale, pyramidal hierarchy of deep convolutional networks to construct feature pyramids with marginal extra cost. A top-down architecture with lateral connections is developed for building high-level semantic feature maps at all scales. This architecture, called a Feature Pyramid Network (FPN), shows significant improvement as a generic feature extractor in several applications. Using FPN in a basic Faster R-CNN system, our method achieves state-of-the-art single-model results on the COCO detection benchmark without bells and whistles, surpassing all existing single-model entries including those from the COCO 2016 challenge winners. In addition, our method can run at 6 FPS on a GPU and thus is a practical and accurate solution to multi-scale object detection. Code will be made publicly available.

Download the Paper

Related Publications

June 16, 2019

COMPUTER VISION

3D human pose estimation in video with temporal convolutions and semi-supervised training | Facebook AI Research

In this work, we demonstrate that 3D poses in video can be effectively estimated with a fully convolutional model based on dilated temporal convolutions over 2D keypoints. We also introduce back-projection, a simple and effective…

Dario Pavllo, Christoph Feichtenhofer, David Grangier, Michael Auli

June 16, 2019

June 15, 2019

COMPUTER VISION

FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search | Facebook AI Research

Designing accurate and efficient ConvNets for mobile devices is challenging because the design space is combinatorially large. Due to this, previous neural architecture search (NAS) methods are computationally expensive. ConvNet architecture…

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing Jia, Kurt Keutzer

June 15, 2019

April 28, 2019

COMPUTER VISION

Inverse Path Tracing for Joint Material and Lighting Estimation | Facebook AI Research

Modern computer vision algorithms have brought significant advancement to 3D geometry reconstruction. However, illumination and material reconstruction remain less studied, with current approaches assuming very simplified models for materials…

Dejan Azinović, Tzu-Mao Li, Anton Kaplanyan, Matthias Nießner

April 28, 2019

June 16, 2019

COMPUTER VISION

Inverse Cooking: Recipe Generation from Food Images | Facebook AI Research

People enjoy food photography because they appreciate food. Behind each meal there is a story described in a complex recipe and, unfortunately, by simply looking at a food image we do not have access to its preparation process. Therefore, in…

Amaia Salvador, Michal Drozdzal, Xavier Giro-i-Nieto, Adriana Romero

June 16, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.