End-to-end Object Detection with Transformers

May 27, 2020


We present a new method that views object detection as a direct set prediction problem. Our approach streamlines the detection pipeline, effectively removing the need for many hand-designed components like a non-maximum suppression procedure or anchor generation that explicitly encode our prior knowledge about the task. The main ingredients of the new framework, called DEtection TRansformer or DETR, are a set-based global loss that forces unique predictions via bipartite matching, and a transformer encoder-decoder architecture. Given a fixed small set of learned object queries, DETR reasons about the relations of the objects and the global image context to directly output the final set of predictions in parallel. The new model is conceptually simple and does not require a specialized library, unlike many other modern detectors. DETR demonstrates accuracy and run-time performance on par with the well-established and highly-optimized Faster RCNN baseline on the challenging COCO object detection dataset. Moreover, DETR can be easily generalized to produce panoptic segmentation in a unified manner. We show that it significantly outperforms competitive baselines. Training code and pretrained models are available at

Download the Paper


Written by

Nicolas Carion

Francisco Massa

Gabriel Synnaeve

Nicolas Usunier

Alexander Kirillov

Sergey Zagoruyko

Research Topics

Computer Vision

Related Publications

June 15, 2019


FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search | Facebook AI Research

Designing accurate and efficient ConvNets for mobile devices is challenging because the design space is combinatorially large. Due to this, previous neural architecture search (NAS) methods are computationally expensive. ConvNet architecture…

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing Jia, Kurt Keutzer

June 15, 2019

April 28, 2019


Inverse Path Tracing for Joint Material and Lighting Estimation | Facebook AI Research

Modern computer vision algorithms have brought significant advancement to 3D geometry reconstruction. However, illumination and material reconstruction remain less studied, with current approaches assuming very simplified models for materials…

Dejan Azinović, Tzu-Mao Li, Anton Kaplanyan, Matthias Nießner

April 28, 2019

June 14, 2019


Thinking Outside the Pool: Active Training Image Creation for Relative Attributes | Facebook AI Research

Current wisdom suggests more labeled image data is always better, and obtaining labels is the bottleneck. Yet curating a pool of sufficiently diverse and informative images is itself a challenge. In particular, training image curation is…

Aron Yu, Kristen Grauman

June 14, 2019

September 09, 2018


DDRNet: Depth Map Denoising and Refinement for Consumer Depth Cameras Using Cascaded CNNs | Facebook AI Research

Consumer depth sensors are more and more popular and come to our daily lives marked by its recent integration in the latest iPhone X. However, they still suffer from heavy noises which dramatically limit their applications. Although plenty of…

Shi Yan, Chenglei Wu, Lizhen Wang, Feng Xu, Liang An, Kaiwen Guo, Yebin Liu

September 09, 2018

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.