NLP

COMPUTER VISION

Efficient Self-supervised Learning with Contextualized Target Representations for Vision, Speech and Language

December 13, 2022

Abstract

Current self-supervised learning algorithms are often modality-specific and require large amounts of computational resources. To address these issues, we increase the training efficiency of data2vec, a learning objective that generalizes across several modalities. We do not encode masked tokens, use a fast convolutional decoder and amortize the effort to build teacher representations. data2vec 2.0 benefits from the rich contextualized target representations introduced in data2vec which enable a fast self-supervised learner. Experiments on ImageNet-1K image classification show that data2vec 2.0 matches the accuracy of Masked Autoencoders in 16.4x lower pre-training time, on Librispeech speech recognition it performs as well as wav2vec 2.0 in 10.6x less time, and on GLUE natural language understanding it matches a retrained RoBERTa model in half the time. Trading some speed for accuracy results in ImageNet-1K top-1 accuracy of 86.8\% with a ViT-L model trained for 150 epochs.

Download the Paper

AUTHORS

Written by

Michael Auli

Alexei Baevski

Arun Babu

Wei-Ning Hsu

Publisher

arXiv

Related Publications

March 09, 2023

COMPUTER VISION

The Casual Conversations v2 Dataset

Bilal Porgali, VĂ­tor Albiero, Jordan Ryda, Cristian Canton Ferrer, Caner Hazirbas

March 09, 2023

February 24, 2023

NLP

LLaMA: Open and Efficient Foundation Language Models

Faisal Azhar, Hugo Touvron, Armand Joulin, Aurelien Rodriguez, Baptiste Rozière, Eric Hambro, Gautier Izacard, Guillaume Lample, Marie-Anne Lachaux, Naman Goyal, Thibaut Lavril, Timothee Lacroix, Xavier Martinet, Edouard Grave

February 24, 2023

February 21, 2023

COMPUTER VISION

CORE MACHINE LEARNING

ArchRepair: Block-Level Architecture-Oriented Repairing for Deep Neural Networks

Felix Xu, Fuyuan Zhang, Hua Qi, Jianjun Zhao, Jianlang Chen, Lei Ma, Qing Guo, Zhijie Wang

February 21, 2023

February 20, 2023

INTEGRITY

NLP

UNIREX: A Unified Learning Framework for Language Model Rationale Extraction

Maziar Sanjabi, Aaron Chan, Hamed Firooz, Lambert Mathias, Liang Tan, Shaoliang Nie, Xiaochang Peng, Xiang Ren

February 20, 2023

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.