RESEARCH

NLP

Efficient, arbitrarily high precision hardware logarithmic arithmetic for linear algebra

May 15, 2020

Abstract

The logarithmic number system (LNS) is arguably not broadly used due to exponential circuit overheads for summation tables relative to arithmetic precision. Methods to reduce this overhead have been proposed, yet still yield designs with high chip area and power requirements. Use remains limited to lower precision or high multiply/add ratio cases, while much of linear algebra (near 1:1 multiply/add ratio) does not qualify. We present a dual-base approximate logarithmic arithmetic comparable to floating point in use, yet unlike LNS it is easily fully pipelined, extendable to arbitrary precision with O(n^2) overhead, and energy efficient at a 1:1 multiply/add ratio. Compared to float32 or float64 vector inner product with FMA, our design is respectively 2.3× and 4.6× more energy efficient in 7 nm CMOS. It depends on exp and log evaluation 5.4× and 3.2× more energy efficient, at 0.23× and 0.37× the chip area for equivalent accuracy versus standard hyperbolic CORDIC using shift-and-add and approximated ODE integration in the style of Revol and Yakoubsohn. This technique is a novel alternative for low power, high precision hardened linear algebra in computer vision, graphics and machine learning applications.

Download the Paper

AUTHORS

Written by

Jeff Johnson

Publisher

IEEE Symposium on Computer Arithmetic

Related Publications

April 14, 2024

SPEECH & AUDIO

NLP

CoLLD: Contrastive Layer-to-Layer Distillation for Compressing Multilingual Pre-Trained Speech Encoders

Heng-Jui Chang, Ning Dong (AI), Ruslan Mavlyutov, Sravya Popuri, Andy Chung

April 14, 2024

February 21, 2024

INTEGRITY

NLP

Watermarking Makes Language Models Radioactive

Tom Sander, Pierre Fernandez, Alain Durmus, Matthijs Douze, Teddy Furon

February 21, 2024

December 07, 2023

CONVERSATIONAL AI

NLP

Llama Guard: LLM-based Input-Output Safeguard for Human-AI Conversations

Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi Rungta, Krithika Iyer, Yuning Mao, Davide Testuggine, Madian Khabsa

December 07, 2023

December 06, 2023

NLP

Polar Ducks and Where to Find Them: Enhancing Entity Linking with Duck Typing and Polar Box Embeddings

Mattia Atzeni, Mike Plekhanov, Frederic Dreyer, Nora Kassner, Simone Merello, Louis Martin, Nicola Cancedda

December 06, 2023

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.