RESEARCH

NLP

Don’t Say That! Making Inconsistent Dialogue Unlikely with Unlikelihood Training

June 22, 2020

Abstract

Generative dialogue models currently suffer from a number of problems which standard maximum likelihood training does not address. They tend to produce generations that (i) rely too much on copying from the context, (ii) contain repetitions within utterances, (iii) overuse frequent words, and (iv) at a deeper level, contain logical flaws. In this work we show how all of these problems can be addressed by extending the recently introduced unlikelihood loss (Welleck et al., 2019a) to these cases. We show that appropriate loss functions which regularize generated outputs to match human distributions are effective for the first three issues. For the last important general issue, we show applying unlikelihood to collected data of what a model should not do is effective for improving logical consistency, potentially paving the way to generative models with greater reasoning ability. We demonstrate the efficacy of our approach across several dialogue tasks.

Download the Paper

AUTHORS

Written by

Margaret Li

Stephen Roller

Ilia Kulikov

Sean Welleck

Y-Lan Boureau

Kyunghyun Cho

Jason Weston

Publisher

Association for Computational Linguistics (ACL)

Related Publications

June 03, 2019

NLP

FAIRSEQ: A Fast, Extensible Toolkit for Sequence Modeling | Facebook AI Research

FAIRSEQ is an open-source sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language modeling, and other text generation tasks. The toolkit is based on PyTorch and supports…

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli

June 03, 2019

June 02, 2019

NLP

Cooperative Learning of Disjoint Syntax and Semantics | Facebook AI Research

There has been considerable attention devoted to models that learn to jointly infer an expression’s syntactic structure and its semantics. Yet, Nangia and Bowman (2018) has recently shown that the current best systems fail to learn the correct…

Serhii Havrylov, Germán Kruszewski, Armand Joulin

June 02, 2019

October 30, 2018

NLP

Loss in Translation: Learning Bilingual Word Mapping with a Retrieval Criterion | Facebook AI Research

Continuous word representations learned separately on distinct languages can be aligned so that their words become comparable in a common space. Existing works typically solve a least-square regression problem to learn a rotation aligning a…

Armand Joulin, Piotr Bojanowski, Tomas Mikolov, Hervé Jégou, Edouard Grave

October 30, 2018

October 31, 2018

NLP

Understanding Back-Translation at Scale | Facebook AI Research

An effective method to improve neural machine translation with monolingual data is to augment the parallel training corpus with back-translations of target language sentences. This work broadens the understanding of back-translation and…

Sergey Edunov, Myle Ott, Michael Auli, David Grangier

October 31, 2018

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.