Discovering Motor Programs by Recomposing Demonstrations

April 26, 2020


In this paper, we present an approach to learn recomposable motor primitives across large-scale and diverse manipulation demonstrations. Current approaches to decomposing demonstrations into primitives often assume manually defined primitives and bypass the difficulty of discovering these primitives. On the other hand, approaches in primitive discovery put restrictive assumptions on the complexity of a primitive, which limit applicability to narrow tasks. Our approach attempts to circumvent these challenges by jointly learning both the underlying motor primitives and recomposing these primitives to form the original demonstration. Through constraints on both the parsimony of primitive decomposition and the simplicity of a given primitive, we are able to learn a diverse set of motor primitives, as well as a coherent latent representation for these primitives. We demonstrate, both qualitatively and quantitatively, that our learned primitives capture semantically meaningful aspects of a demonstration. This allows us to compose these primitives in a hierarchical reinforcement learning setup to efficiently solve robotic manipulation tasks like reaching and pushing.

Download the Paper

Related Publications

June 14, 2020

Iterative Answer Prediction with Pointer-Augmented Multimodal Transformers for TextVQA | Facebook AI Research

Ronghang Hu, Amanpreet Singh, Trevor Darrell, Marcus Rohrbach

June 14, 2020

April 25, 2020

Permutation Equivariant Models for Compositional Generalization in Language | Facebook AI Research

Jonathan Gordon, David Lopez-Paz, Marco Baroni, Diane Bouchacourt

April 25, 2020

September 15, 2019


Who Needs Words? Lexicon-Free Speech Recognition | Facebook AI Research

Tatiana Likhomanenko, Gabriel Synnaeve, Ronan Collobert

September 15, 2019

September 10, 2019


Bridging the Gap Between Relevance Matching and Semantic Matching for Short Text Similarity Modeling | Facebook AI Research

Jinfeng Rao, Linqing Liu, Yi Tay, Wei Yang, Peng Shi, Jimmy Lin

September 10, 2019

Help Us Pioneer The Future of Ai

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.