CORE MACHINE LEARNING

Deep Riemannian Manifold Learning

December 11, 2020

Abstract

We present a new class of learnable Riemannian manifolds with a metric parameterized by a deep neural network. The core manifold operations--specifically the Riemannian exponential and logarithmic maps--are solved using approximate numerical techniques. Input and parameter gradients are computed with an adjoint sensitivity analysis. This enables us to fit geodesics and distances with gradient-based optimization of both on-manifold values and the manifold itself. We demonstrate our method's capability to model smooth, flexible metric structures in graph embedding tasks.

Download the Paper

AUTHORS

Publisher

NeurIPS Workshop on Differential Geometry for ML

Research Topics

Core Machine Learning

Related Publications

February 15, 2024

RANKING AND RECOMMENDATIONS

CORE MACHINE LEARNING

TASER: Temporal Adaptive Sampling for Fast and Accurate Dynamic Graph Representation Learning

Danny Deng, Hongkuan Zhou, Hanqing Zeng, Yinglong Xia, Chris Leung (AI), Jianbo Li, Rajgopal Kannan, Viktor Prasanna

February 15, 2024

February 15, 2024

CORE MACHINE LEARNING

Revisiting Feature Prediction for Learning Visual Representations from Video

Adrien Bardes, Quentin Garrido, Xinlei Chen, Michael Rabbat, Yann LeCun, Mido Assran, Nicolas Ballas, Jean Ponce

February 15, 2024

January 09, 2024

CORE MACHINE LEARNING

Accelerating a Triton Fused Kernel for W4A16 Quantized Inference with SplitK Work Decomposition

Less Wright, Adnan Hoque

January 09, 2024

January 06, 2024

RANKING AND RECOMMENDATIONS

REINFORCEMENT LEARNING

Learning to bid and rank together in recommendation systems

Geng Ji, Wentao Jiang, Jiang Li, Fahmid Morshed Fahid, Zhengxing Chen, Yinghua Li, Jun Xiao, Chongxi Bao, Zheqing (Bill) Zhu

January 06, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.