Deep Relightable Appearance Models for Animatable Faces

August 9, 2021


We present a method for building high-fidelity animatable 3D face models that can be posed and rendered with novel lighting environments in real-time. Our main insight is that relightable models trained to produce an image lit from a single light direction can generalize to natural illumination conditions but are computationally expensive to render. On the other hand, efficient high-fidelity face models trained with point-light data do not generalize to novel lighting conditions. We leverage the strengths of each of these two approaches. We first train an expensive but generalizable model on point-light illuminations, and use it to generate a training set of high-quality synthetic face images under natural illumination conditions. We then train an efficient model on this augmented dataset, reducing the generalization ability requirements. As the efficacy of this approach hinges on the quality of the synthetic data we can generate, we present a study of lighting pattern combinations for dynamic captures and evaluate their suitability for learning generalizable relightable models. Towards achieving the best possible quality, we present a novel approach for generating dynamic relightable faces that exceeds state-of-the-art performance. Our method is capable of capturing subtle lighting effects and can even generate compelling near-field relighting despite being trained exclusively with far-field lighting data. Finally, we motivate the utility of our model by animating it with images captured fromVR-headset mounted cameras, demonstrating the first system for face-driven interactions in VR that uses a photorealistic relightable face model.

Something Went Wrong
We're having trouble playing this video.

Download the Paper


Written by

Sai Bi

Stephen Lombardi

Shunsuke Saito

Tomas Simon

Shih-en Wei

Kevyn McPhail

Ravi Ramamoorthi

Yaser Sheikh

Jason Saragih



Research Topics

Computer Vision


Related Publications

June 17, 2019


Graph-Based Global Reasoning Networks | Facebook AI Research

Globally modeling and reasoning over relations between regions can be beneficial for many computer vision tasks on both images and videos. Convolutional Neural Networks (CNNs) excel at modeling local relations by convolution operations, but…

Yunpeng Chen, Marcus Rohrbach, Zhicheng Yan, Shuicheng Yan, Jiashi Feng, Yannis Kalantidis

June 17, 2019

June 17, 2019


DMC-Net: Generating Discriminative Motion Cues for Fast Compressed Video Action Recognition | Facebook AI Research

Motion has shown to be useful for video understanding, where motion is typically represented by optical flow. However, computing flow from video frames is very time-consuming. Recent works directly leverage the motion vectors and residuals…

Zheng Shou, Xudong Lin, Yannis Kalantidis, Laura Sevilla-Lara, Marcus Rohrbach, Shih-Fu Chang, Zhicheng Yan

June 17, 2019

June 18, 2019


Embodied Question Answering in Photorealistic Environments with Point Cloud Perception | Facebook AI Research

To help bridge the gap between internet vision-style problems and the goal of vision for embodied perception we instantiate a large-scale navigation task – Embodied Question Answering [1] in photo-realistic environments (Matterport 3D). We…

Erik Wijmans, Samyak Datta, Oleksandr Maksymets, Abhishek Das, Georgia Gkioxari, Stefan Lee, Irfan Essa, Devi Parikh, Dhruv Batra

June 18, 2019

June 11, 2019



Adversarial Inference for Multi-Sentence Video Description | Facebook AI Research

While significant progress has been made in the image captioning task, video description is still in its infancy due to the complex nature of video data. Generating multi-sentence descriptions for long videos is even more challenging. Among the…

Jae Sung Park, Marcus Rohrbach, Trevor Darrell, Anna Rohrbach

June 11, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.