RESEARCH

ML APPLICATIONS

Deep Learning Training in Facebook Data Centers: Design of Scale-up and Scale-out Systems

September 3, 2020

Abstract

Large-scale training is important to ensure high performance and accuracy of machine-learning models. At Facebook we use many different models, including computer vision, video and language models. However, in this paper we focus on the deep learning recommendation models (DLRMs), which are responsible for more than 50% of the training demand in our data centers. Recommendation models present unique challenges in training because they exercise not only compute but also memory capacity as well as memory and network bandwidth. As model size and complexity increase, efficiently scaling training becomes a challenge. To address it we design Zion - Facebook's next-generation large-memory training platform that consists of both CPUs and accelerators. Also, we discuss the design requirements of future scale-out training systems.

Download the Paper

AUTHORS

Written by

Maxim Naumov

Jiyan Yang

John Kim

Dheevatsa Mudigere

Srinivas Sridharan

Xiaodong Wang

Whitney Zhao

Serhat Yilmaz

Changkyu Kim

Hector Yuen

Mustafa Ozdal

Krishnakumar Nair

Isabel Gao

Mikhail Smelyanskiy

Publisher

arXiv

Research Topics

Artificial Intelligence

Human and Machine Learning

Systems Research

Related Publications

June 03, 2019

NLP

FAIRSEQ: A Fast, Extensible Toolkit for Sequence Modeling | Facebook AI Research

FAIRSEQ is an open-source sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language modeling, and other text generation tasks. The toolkit is based on PyTorch and supports…

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli

June 03, 2019

June 02, 2019

NLP

Cooperative Learning of Disjoint Syntax and Semantics | Facebook AI Research

There has been considerable attention devoted to models that learn to jointly infer an expression’s syntactic structure and its semantics. Yet, Nangia and Bowman (2018) has recently shown that the current best systems fail to learn the correct…

Serhii Havrylov, Germán Kruszewski, Armand Joulin

June 02, 2019

June 15, 2019

COMPUTER VISION

FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search | Facebook AI Research

Designing accurate and efficient ConvNets for mobile devices is challenging because the design space is combinatorially large. Due to this, previous neural architecture search (NAS) methods are computationally expensive. ConvNet architecture…

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing Jia, Kurt Keutzer

June 15, 2019

April 28, 2019

COMPUTER VISION

Inverse Path Tracing for Joint Material and Lighting Estimation | Facebook AI Research

Modern computer vision algorithms have brought significant advancement to 3D geometry reconstruction. However, illumination and material reconstruction remain less studied, with current approaches assuming very simplified models for materials…

Dejan Azinović, Tzu-Mao Li, Anton Kaplanyan, Matthias Nießner

April 28, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.