RESEARCH

COMPUTER VISION

Decoupling Representation and Classifier for Long-Tailed Recognition

April 25, 2020

Abstract

The long-tail distribution of the visual world poses great challenges for deep learning based classification models on how to handle the class imbalance problem. Existing solutions usually involve class-balancing strategies, e.g. by loss re-weighting, data re-sampling, or transfer learning from head- to tail-classes, but most of them adhere to the scheme of jointly learning representations and classifiers. In this work, we decouple the learning procedure into representation learning and classification, and systematically explore how different balancing strategies affect them for long-tailed recognition. The findings are surprising: (1) data imbalance might not be an issue in learning high-quality representations; (2) with representations learned with the simplest instance-balanced (natural) sampling, it is also possible to achieve strong long-tailed recognition ability by adjusting only the classifier. We conduct extensive experiments and set new state-of-the-art performance on common long-tailed benchmarks like ImageNet-LT, Places-LT and iNaturalist, showing that it is possible to outperform carefully designed losses, sampling strategies, even complex modules with memory, by using a straightforward approach that decouples representation and classification. Our code is available at https://github.com/facebookresearch/classifier-balancing.

Download the Paper

AUTHORS

Written by

Bingyi Kang

Saining Xie

Marcus Rohrbach

Zhicheng Yan

Albert Gordo

Jiashi Feng

Yannis Kalantidis

Publisher

International Conference on Learning Representations (ICLR)

Research Areas

Computer Vision

Related Publications

June 17, 2019

COMPUTER VISION

Graph-Based Global Reasoning Networks | Facebook AI Research

Globally modeling and reasoning over relations between regions can be beneficial for many computer vision tasks on both images and videos. Convolutional Neural Networks (CNNs) excel at modeling local relations by convolution operations, but…

Yunpeng Chen, Marcus Rohrbach, Zhicheng Yan, Shuicheng Yan, Jiashi Feng, Yannis Kalantidis

June 17, 2019

June 17, 2019

COMPUTER VISION

DMC-Net: Generating Discriminative Motion Cues for Fast Compressed Video Action Recognition | Facebook AI Research

Motion has shown to be useful for video understanding, where motion is typically represented by optical flow. However, computing flow from video frames is very time-consuming. Recent works directly leverage the motion vectors and residuals…

Zheng Shou, Xudong Lin, Yannis Kalantidis, Laura Sevilla-Lara, Marcus Rohrbach, Shih-Fu Chang, Zhicheng Yan

June 17, 2019

June 18, 2019

COMPUTER VISION

Embodied Question Answering in Photorealistic Environments with Point Cloud Perception | Facebook AI Research

To help bridge the gap between internet vision-style problems and the goal of vision for embodied perception we instantiate a large-scale navigation task – Embodied Question Answering [1] in photo-realistic environments (Matterport 3D). We…

Erik Wijmans, Samyak Datta, Oleksandr Maksymets, Abhishek Das, Georgia Gkioxari, Stefan Lee, Irfan Essa, Devi Parikh, Dhruv Batra

June 18, 2019

June 11, 2019

NLP

COMPUTER VISION

Adversarial Inference for Multi-Sentence Video Description | Facebook AI Research

While significant progress has been made in the image captioning task, video description is still in its infancy due to the complex nature of video data. Generating multi-sentence descriptions for long videos is even more challenging. Among the…

Jae Sung Park, Marcus Rohrbach, Trevor Darrell, Anna Rohrbach

June 11, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.