RESEARCH

COMPUTER VISION

Cycle-Consistency for Robust Visual Question Answering

June 7, 2019

Abstract

Despite significant progress in Visual Question Answering over the years, robustness of today’s VQA models leave much to be desired. We introduce a new evaluation protocol and associated dataset (VQA-Rephrasings) and show that state-of-the-art VQA models are notoriously brittle to linguistic variations in questions. VQA-Rephrasings contains 3 human-provided rephrasings for 40k questions spanning 40k images from the VQA v2.0 validation dataset. As a step towards improving robustness of VQA models, we propose a model-agnostic framework that exploits cycle consistency. Specifically, we train a model to not only answer a question, but also generate a question conditioned on the answer, such that the answer predicted for the generated question is the same as the ground truth answer to the original question. Without the use of additional annotations, we show that our approach is significantly more robust to linguistic variations than state-of-the-art VQA models, when evaluated on the VQA-Rephrasings dataset. In addition, our approach outperforms state-of-the-art approaches on the standard VQA and Visual Question Generation tasks on the challenging VQA v2.0 dataset.

Download the Paper

Related Publications

June 17, 2019

COMPUTER VISION

DMC-Net: Generating Discriminative Motion Cues for Fast Compressed Video Action Recognition | Facebook AI Research

Zheng Shou, Xudong Lin, Yannis Kalantidis, Laura Sevilla-Lara, Marcus Rohrbach, Shih-Fu Chang, Zhicheng Yan

June 17, 2019

June 18, 2019

COMPUTER VISION

Embodied Question Answering in Photorealistic Environments with Point Cloud Perception | Facebook AI Research

Erik Wijmans, Samyak Datta, Oleksandr Maksymets, Abhishek Das, Georgia Gkioxari, Stefan Lee, Irfan Essa, Devi Parikh, Dhruv Batra

June 18, 2019

July 28, 2019

SPEECH & AUDIO

COMPUTER VISION

Learning to Optimize Halide with Tree Search and Random Programs | Facebook AI Research

Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li, Michaël Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Durand, Jonathan Ragan-Kelley

July 28, 2019

June 17, 2019

COMPUTER VISION

Graph-Based Global Reasoning Networks | Facebook AI Research

Yunpeng Chen, Marcus Rohrbach, Zhicheng Yan, Shuicheng Yan, Jiashi Feng, Yannis Kalantidis

June 17, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.