July 21, 2020
Spoken language translation has recently witnessed a resurgence in popularity, thanks to the development of end-to-end models and the creation of new corpora, such as Augmented LibriSpeech (Kocabiyikoglu et al., 2018) and MuST-C (Di Gangi et al., 2019). Existing datasets involve language pairs with English as a source language, involve very specific domains or are low resource. We introduce CoVoST, a multilingual speech-to-text translation corpus from 11 languages into English, diversified with over 11,000 speakers and over 60 accents. We describe the dataset creation methodology and provide empirical evidence of the quality of the data. We also provide initial benchmarks, including, to our knowledge, the first end-to-end many-to-one multilingual models for spoken language translation. CoVoST is released under CC0 license and free to use. We also provide additional evaluation data derived from Tatoeba under CC licenses.
Publisher
Language Resources and Evaluation Conference (LREC)
Research Topics
Jinfeng Rao, Linqing Liu, Yi Tay, Wei Yang, Peng Shi, Jimmy Lin
Jean Alaux, Edouard Grave, Marco Cuturi, Armand Joulin
Patrick Lewis, Ludovic Denoyer, Sebastian Riedel
Yi Tay, Shuohang Wang, Luu Anh Tuan, Jie Fu, Minh C. Phan, Xingdi Yuan, Jinfeng Rao, Siu Cheung Hui, Aston Zhang